“ BELVG AWARD WINNING

FOR SUCCESSFUL ECOMMERCE AGENCY

E-COMMERCE

Magento 2 Certified Professional
Developer Guide

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 1: Magento Architecture and Customization

1.1 Describe Magento’'s module-based
architecture

Magento 2 modules are realized with MVVM architecture:

https://upload.wikimedia.org/wikipedia/commons/8/87/MVVMPattern.png

MVVM has three layers:

1. Model

The Model contains the application’s business logic and depends on an associated
class—the ResourceModel - for database access. Models depend on service contracts
to disclose their functionality to other application layers.

2. View

The View is both structure and layout of what is seen on a screen - the actual HTML.
This is achieved in the PHTML files distributed with modules. Such files are associated
with each ViewModel in the Layout XML files, sometimes referred to as binders. The
layout files can as well assign JavaScript files to be used on the final page.

3. ViewModel

The ViewModel works together with the Model layer and exposes only necessary
information to the View layer. In Magento 2, this is handled by the module’s Block
classes. Note that this was usually part of the Controller role of an MVC system. On
MVVM, the controller is only responsible for handling the user flow, meaning that it
receives requests and either tells the system to render a view or to redirect the user to
another route.

http://devdocs.magento.com/common/images/archi_diagrams_layers_alt4.jpg
Magento 2 architecture consists of 4 layers:

1. Presentation Layer

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://upload.wikimedia.org/wikipedia/commons/8/87/MVVMPattern.png
http://devdocs.magento.com/common/images/archi_diagrams_layers_alt4.jpg
http://www.belvg.com/
mailto:contact@belvg.com

Presentation Layer is the top layer that contains view elements (layouts, blocks,
templates) and controllers.

Presentation Layer usually calls the service layer using service contracts. But,
depending on the implementation, it may cross over with the business logic.

2. Service layer

Service layer is the layer between presentation and domain layers. It executes service
contracts, which are implemented as PHP interfaces. Service contracts allow to add or
change the business logic resource model using the dependency injection file (di.xml).
The service layer is also used to provide APl access (REST / SOAP or other modules).
The service interface is declared in the / APl namespace of the module.

Data (entity) interface is declared inside / Api / Data. Data entities are the structures of
data passed to and returned from service interfaces.

3. Domain layer

The domain layer is responsible for business logic that does not contain information
about resources and the database. Also, the domain layer may include the
implementation of service contracts. Each data model at the domain layer level
depends on the resource model, which is responsible for the database access.

4. Persistence layer

The persistence layer describes a resource model that is responsible for retrieving and
modifying data in a database using CRUD requests.

It also implements additional features of business logic, such as data validation and the
implementation of database functions.

Describe module limitations

1. Certain modules can come in conflict with each other if the dependencies in
module.xml (sequence) are specified incorrectly.
2. Not all classes can be overridden with modules.

How do different modules interact with each other?

Different modules interact with each other via dependency injection and service
contracts. They can also be dependent on other modules when they apply other
modules’ logic.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

What side effects can come from this interaction?

If modules contain di.xml files, such files may sometimes load in the wrong order or try
to override the already overridden module functionality. To resolve this situation, use
sequence in module.xml.

When modules use other modules’ logic and this very module is deleted, the
dependencies would be unable to load and an error at the code execution will occur.

1.2 Describe Magento's directory structure

Determine how to locate different types of files in
Magento. Where are the files containing JavaScript,
HTML, and PHP located?

B magento2

>
> |
.|
> |
-
> |
-
.
-
> |

The whole Magento structure can be divided into the following types:
1. Magento root structure
2. Modules structure
3. Themes structure

To begin with, Magento has various areas that allow to determine configuration, view
files, etc. for a certain area. Adminhtml (applied to the administration panel) and

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

frontend (applied to frontend parts of the website) are examples of area. From this
point, we will use <area> to denote any of the available areas.

Magento root partition structure:
1) app - the directory recommended for Magento components development. It
consists of:
a) design - contains themes
b) code - contains modules
c) etc - contains Magento framework settings
d) i18n - contains the language package. Example:

2) bin - there the executed Magento file is located that allows to manage the
website via CLI.
3) dev - the directory for Magento test scripts (for more information, follow the link
https://devdocs.magento.com/guides/v2.3/mtf/mtf_quickstart.html).
4) generated - contains the generated php files (Factories, Proxies, Interceptors, DI
configuration).
5) lib - used for Magento library files.
6) phpserver - contains the router file “router.php” for the php Built-in web server.
Allows to use Magento without a third-party web server, like nginx and apache.
Here is the example of php Built-in web server launch:
php -S 127.0.0.1:8082 -t ./pub/ ./phpserver/router.php
7) pub - the directory used to access Magento static files. It contains the following
directories:
a) errors - stores the error pages,
b) media - stores all media files (product, pages, etc.),
c) static - stores Magento themes generated files.
This directory can be specified as web root in nginx config or in apache config.
Numerous Magento directories contain “.htaccess” files (including root and pub), which
allow you to configure apache for a specific directory. Nginx does not support

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://devdocs.magento.com/guides/v2.3/mtf/mtf_quickstart.html
http://www.belvg.com/
mailto:contact@belvg.com

.htaccess. For nginx, Magento has a nginx.conf.sample file, which is an example of
Magento configuration for nginx. This file can be copied, modified, and include the main
nginx configuration file.

8) setup - contains Setup Wizard
9) update - contains Magento Updater
10)var - contains all the temporary files. Consists of:

B view_preprocessed

a) cache - contains cache files if cache utilizes file system as a storage
b) page_cache - contains FPC (Full Page Cache) files, if FPC utilizes file
system as a storage
c¢) log - contains Magento logs
d) report - contains Magento error/exception files that were not intercepted
by code
e) session - contains session files
f) view_preprocessed - contains style generated files and minified HTML
11)vendor - contains the installed composer packages. When Magento is installed
via composer or using official site’s archive, then all the standard Magento
modules and Magento Framework are located in this folder. In case you install
via the official GIT repository, which is recommended only for contributing, then
Magento Framework will be located in lib/internal folder, while the default
modules - in app/code folder.

Next, we will proceed with module structure.
Modules can be located in /app/code and /vendor directories.

The modules in /app/code can be found at a similar path -
/app/code/BelVG/MyModule, where BelVG is vendor name, MyModule - module name
(in capitals). PSR-0 standard is used for php classes loading in /app/code directories
(https://www.php-fig.org/psr/psr-0/). Example: on request,
\BelVG\MyModule\Model\MyModel class will be automatically loaded with
app/code/BelVG/MyModule/Model/MyModel.php file.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://www.php-fig.org/psr/psr-0/
http://www.belvg.com/
mailto:contact@belvg.com

Modules in /vendor are located at the similar /vendor/belvg/module-my-module path,
where belvg/module-my-module is the composer package name. Package name
contains the names of a vendor and a project. In theory, there are no strict requirements
to the package name because it does not impact the module operation. But, for your
own comfort, it is better to specify package name as
“{vendor-name}/module-{module-name}”. Package name should be in lowercase, with
words separated by dashes. PSR-4 standard is applied in /vendor directory for loading
php classes (https://www.php-fig.org/psr/psr-4/).

Example: when requested, \BelVG\MyModule\Model\MyModel class is automatically
loaded from the file inside the /vendor/belvg/module-my-module/Model/MyModel.php
composer package.

Hereinafter <module_dir> will be used to specify module root directory, for this directory
can be located both in app/code and in vendor.

It is recommended to install the third-party modules via composer.

v BB Backend

=
>
=
>
| &
>
| &
>
| &
>
| &
>

v

Inside the module directory, the following directories and files are located:

a) etc - required directory where the module configuration is stored.

b) Block - the directory with php class blocks.

c) Model - the directory with models and resource models

d) Controller - contains all actions for the module. Controller\<Controller>\<Action>
is the php classes template for all module actions. For instance, for

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://www.php-fig.org/psr/psr-4/
http://www.belvg.com/
mailto:contact@belvg.com

<front_name>/<controller>/<action>/ query the
Controller/<Controller>/<Action>.php file will be requested.

e) Helper - contains helper classes

f) Console - contains php classes for CLI calls via /bin/magento.

g) Api- contains APl interfaces.

h) Observer - contains php files of observer classes.

i) i18n - localization files directory

i) Setup - php classes directory that executes certain actions during module
installation, upgrade, refresh or deletion. From Magento 2.3 version and further,
the directory also contains data and schema patches.

k) Plugins - the directory, containing plugins for classes and interfaces.

) Ui- contains auxiliary php classes for Ul components, like modifies, data
providers, etc.

m) view - contains templates, CSS, JS, images, layouts, Ul components files. The
internal structure of this directory consists of <area> and base, with base storing
the files that relate to all areas. <area> and base have the similar file structures.

To make an example, we will give examples of two areas’ contents :

v BE view

v BB adminhtml

requirejs-canfig.js

This is the internal structure of the directories:

email - contains email templates. For example, order_new.html
layout - contains layouts xml files. Commonly, the layout name is formed
according to this template: {route_id}_{controller}_{action}.xml

e templates - contains phtml templates’ files

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e page_layout - contains files, describing Magento page types (1column.xml,
2columns-left.xml, etc,)
ui_component - contains .xml files with Ul components description
web - contains static files, template files for KnockoutJS, JS, theme files
and images. Below is web directory example:

v I web

> B

css - contains css styles

images - contains images

js - contains JavaScript files

template - contains .html templates for KnockoutJS

n) registration.php - the required file that registers the module in Magento.
0) composer.json - contains composer package configuration.

Next we will describe the design structure.

Magento 2 templates are located in app/design/ and vendor folders. Each Magento 2
theme is connected to a certain area.

Themes for admin panel are located at app/design/adminhtml folder, while

app/design/frontend contains themes for frontend.
v Blapp

BN code
v B design
¢ B adminhtml

Bl frontend

Themes in app/design are located at <area>/<ThemeVendor>/<theme_name> folders,
where <ThemeVendor> is written in capital letter, <theme_name> in lowercase. For
example: app/design/frontend/BelVG/my_theme.

Themes in /vendor are located at the following path
/vendor/belvg/theme-frontend-my-theme, where belvg/theme-frontend-my-theme is
composer package name. Similar to modules, there are no requirements to composer
package name, but for simplicity, it is better so name them as
“<vendor-name>/theme-<area>-<theme-name>".

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Further in the text, we will use <theme_dir> to define the theme root directory, for this
directory can be located both in app/design and in vendor.

The following directories and files are located in the directory together with the theme:

a)

b)

c)
d)

f)

h)

<ModuleVendor>_<ModuleName> - common template for override view module
files. For example, BelVG_CustomModule.

Inside the directories and files, the structure is similar to view/<area>/ folder
inside the module (for example,
app/code/BelVG/CustomModule/view/frontend).

etc - contains theme configuration files.

media - contains theme media files.

web - contains theme css/js/fonts files.

Theme.xml file - a mandatory file with the theme configurations, like the name of
the theme and its parent.

requirejs-config.js - contains RequireJS config.

registration.php - a mandatory file that registers a theme in Magento.
composer.json - contains composer package configuration.

How do you find the files responsible for certain
functionality?

To find the files responsible for certain functionality, search among di.xml files
(Dependency Injection configuration). Another way is to search in a module or theme
layout files, if you need to find certain blocks. The hints, enabled in the store settings
(Stores -> Configuration -> Advanced -> Developer), can also prove helpful for this type
of search.

Debug

Enabled Template Path Hints for | v
Storefront

Enabled Template Path Hints for Admin | No v

Add Block Names to Hints No v

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

For actions search, use the directories structure, because actions are located at the
module directory the following way: <module_dir>/Controllers/<Controller>/<Action>).
Front Name is specified in <module_dir>/etc/<area>/routes.xml, so finding it via the file
search is a relatively simple task.

To search for the model functionality, use the full class or interface name (including
namespace). Conduct the file search, specifying the full name of the class or the
interface (without leading backlash).

In case of SSH access, you can use ‘grep’ to search files with particular content:
grep -r 'String that you are looking' [path/to/search]

Example (search files with content "Catalog\Model\ProductRepository" in
vendor/magento/module-catalog folder):

grep -r 'Catalog\\Model\\ProductRepository' vendor/

In case you know the file name, you can use “find":
find [path/to/search] -name 'FileNameMask'
Example (search all webapi.xml files in “vendor™ folder):

find vendor/ -name webapi.xml

When you know both the filename and its contents:

find [path/to/search] -name 'FileNameMask' -exec grep 'String that
you are looking' {} +

Example (search *.xml files with content "Catalog\Model\ProductRepository" in vendor
folder):

find vendor/ -name '*.xml' -exec grep
‘Catalog\\Model\\ProductRepository"' {} +

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

1.3 Utilize configuration XML and variables
scope

Determine how to use configuration files in
Magento 2. Which configuration files correspond to
different features and functionality?

In Magento 2, the configuration is stored at the following locations:
1. In xml files of modules, themes, languages and app/etc folder.
2. Inthe database in core_config_data table.
3. In app/etc/config.php and app/etc/env.php files.
4. Inthe framework variables.

One can modify the configuration from the admin panel only when it is stored in
core_config_data and is not overridden in pp/etc/config.php, app/etc/env.php or via
environment variables. In case it is overridden, it is disabled at the admin panel:

Allow Symlinks

Warning! Enabling this feature is not recommended on production environments because it
represents a potential security risk.

Minify Html Use system value

Minification is not applied in developer mode.

app/etc/config.php and app/etc/env.php files contain Magento basic configuration (for
instance, modules list, scopes, themes, database credentials, cache config, override
core_config_data config and other). They are generated at the Magento 2 installation.
app/etc/config.php file has shared configuration settings, while app/etc/env.php
contains settings that are specific to the installation environment. As of the 2.2 release,
the app/etc/config.php file is no longer an entry in the .gitignore file. This was done to
facilitate pipeline deployment.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Below is the list of xml files inside the module:
1. etc/config.xml - contains the default values of the options from Stores >
Configuration in admin panel menu, as well as other options, like class names
(for instance,
<model>Amazon\Payment\Model\Method\AmazonLoginMethod</model>) and
attributes (for example, <account
backend_model="Magento\Config\Model\Config\Backend\Encrypted" />).
2. etc/di.xml and etc/<area>/di.xml - contains the configuration for dependency
injection
etc/events.xml and etc/<area>/events.xml - the list of the events and observers
etc/<area>/routes.xml - routers’ list.
5. etc/acl.xml - adds module resources into the resource tree, allowing to set up
access for different users.

»w

Resources

6. etc/crontab.xml - adds and configures tasks for cron.

7. etc/module.xml - declares module name and version, as well as its dependencies
from other modules.

8. etc/widget.xml - stores widget configuration.

9. etc/indexer.xml - declares a new indexation type. There, view_id is specified,
which denotes the views described in etc/mview.xml.

10.etc/mview.xml is used to track database changes for a certain entity.

11. etc/webapi.xml - stores configurations for WEB API (REST/SOAP).

12.etc/view.xml - stores product images’ values.

13.etc/product_types.xml - describes product types in a store.

14.etc/product_options.xml - describes the types of options that products can have
and the classes that render options in the admin.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

Administrators Q M & -

DT N < o |

http://www.belvg.com/
mailto:contact@belvg.com

15. etc/extension_attributes.xml - the ability to add custom attribute, introduced in
Magento 2 version. The file describes the attribute and its type, which can be
simple, or complex, or have the form of an interface.

16. etc/catalog_attributes.xml - adds attributes to the groups. quote_item,
wishlist_item, catalog_product, catalog_category, unassignable,
used_in_autogeneration are the standard groups. To learn more, follow the link:
https://www.atwix.com/magento-2/how-to-access-custom-catalog-attributes/

17.etc/adminhtml/system.xml - can relate to the admin section solely, adds Stores >
Configuration settings and describes form sections and fields.

18. etc/adminhtml/menu.xml - can relate to admin area solely, adding the menu
option in the admin panel.

Magento loads different areas and files separately; it also has different file loaders for
each file type.

In Magento 2, XML configuration files have areas: global, frontend and adminhtml,
crontab, graphql, webapi_rest, webapi_soap. You can find a list of them at
Magento\Framework\App\AreaList class, defined via di.xml. Certain xml files can be
specified for each area separately and some may not. For instance, event.xml file can
be specified for each area (global, frontend, adminhtml, etc.), while module.xml can be
specified only for global.

If config file is located at the module etc directory, its values are located in the global
area. To specify configuration area, place the config file into etc/<area> folder. This is a
new concept, introduced in Magento 2. Previously, in the first version of Magento, the
visibility area was defined by a separate branch in XML file. This introduction allows to
load configurations for various visibility areas separately. If the same parameters are
specified for global and non-global areas (for instance, frontend or adminhtml), they will
be merged and loaded together. The parameters, specified in non-global area, or located
in etc/<area> folder, have the priority.

Configuration upload is executed in three steps:

1. System level configurations upload. Loading of the files, necessary for Magento
2 launch (like config.php).

2. Global area configurations upload. Loading of the files, located in app/etc/
Magento 2 directory, such as di.xml, as well as files that relate to the global area
and are directly located in modules’ etc/ folders.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://www.atwix.com/magento-2/how-to-access-custom-catalog-attributes/
http://www.belvg.com/
mailto:contact@belvg.com

3. Specific areas configurations upload. Loading of the files, located at
etc/adminhtml or etc/frontend folders.

Configuration files are merged according to their full xPaths. Specific attributes are
defined in the $ idAttributes array as identifiers. When two files are merged, they contain
all the nodes and values from the original files. The second XML file either adds or
replaces the nodes of the first XML file.

Each XML file type is validated by the corresponding XSD validation scheme. All
validation schemes are in etc / directories of the module. The most important schemes
are located in the Magento framework-e (vendor / magento / framework); for example,
XSD for acl.xml is located in vendor/magento/framework/Acl/etc/acl.xsd directory.

All Magento 2 configuration files are processed by the Magento\Framework\Config\
*classes. These classes load, combine, validate and process configurations, converting
them into the needed format array. If one needs to modify the standard loading
procedure, they must create a single or several classes that inherit the interfaces:

e \Magento\Framework\Config\Datalnterface - allows to get configuration value
and merge two configurations together. \Magento\Framework\Config\Data
class realizes this interface and saves the configuration in cache in order to
speed up the repeated website upload.

e \Magento\Framework\Config\Scopelnterface - allows to specify and get the
current scope.

e \Magento\Framework\Config\FileResolverInterface - runs the config files search,
returns the array or iterator. Keys are the absolute paths, the value is their
content.

e \Magento\Framework\Config\ReaderInterface - reads configuration data.
\Magento\Framework\Config\Reader\Filesystem is the standard reader.

e \Magento\Framework\Config\Converterinterface - converts Merged DOM object
into the array.

e \Magento\Framework\Config\SchemalLocatorInterface - specifies the path to
validation schemes.

e \Magento\Framework\Config\ValidationStatelnterface - defines whether DOM
validation with schema is needed.

Magento 2 has two types of validation for XML configuration files: before and after the
merge. The schemes can be the same or differ from each other.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

One can create the following elements for a custom configuration file:

XML file

XSD schema
Config PHP file
Config reader
Schema locator
Converter

Not all those elements are necessary. Instead of creating them, one can use virtualType
in di.xml and create only the following elements:

e XML file

e XSD schema

e Converter

To make an example of configuration file creation, let us examine product_types.xml file
from Magento_Catalog module. This file allows each module to add a custom product
type; afterwards, the files will get validated and merge.

1. We begin with XSD file creation. Before the merger, Magento_Catalog uses
product_types.xsd validation scheme and product_types_merged.xsd scheme for
the merged XML file.

2. Create the configuration PHP file for access to the file data; in our case, it will be
Config.php. To provide access to the product_types.xml file data, it implements
the Magento\Catalog\Model\ProductType\ConfigInterface interface and realizes
all its methods.

3. We should get reader class in Config.php in the constructor. In our case, it's
Magento\Catalog\Model\ProductType\Config\Reader. This is a small class with
a certain S_idAttributes attribute. In S$fileName variable at the constructor we
define the XML file name.

4. Magento\Catalog\Model\ProductType\Config\SchemalLocator implements two
methods: getSchema and getPerFileSchema return the path to merged XSD and
common XSD files. In the constructor, we define these paths in S_schema and
S_perFileSchema attributes.

5. Convertor class creation. In our case:
Magento\Catalog\Model\ProductType\Config\Converter it implements

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Framework\Config\Converterinterface and realizes convert method
that converts the merged DOM tree of nodes into the array.

1.4 Demonstrate how to use dependency
injection

Describe Magento’s dependency injection approach
and architecture. How are objects realized in
Magento?

Dependency Injection is a design pattern based on the inversion of control principle.
This pattern centers around relations between the objects and its dependencies.
Instead of creating dependencies manually, all the necessary dependencies are passed
into the object with the help of external container. This approach allows to avoid strong
components coupling, for the object is not required to create custom dependencies.
The dependencies container, in its turn, determines which implementations should be
passed to the objects at their creation, depending on the necessary behavior or
configuration.

Dependency inversion principle claims that high-level classes should use low level
objects’ abstractions instead of working with them directly.

Object Manager

Magento 2 applies dependency injection for the functionality, which was offered by
Mage class in Magento 1.

namespace Magento\Backend\Model\Menu;
class Builder

{

public function __ construct(

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Magento\Backend\Model\Menu\ItemFactory $menultemFactory,
Magento\Backend\Model\Menu $menu
) {
$this-> itemFactory = $menultemFactory;
$this-> menu = $menu;

ObjectManager is used as dependencies container, configured with di.xml files.
ObjectManager is responsible for:
e Objects’ creation in factories and proxys
e Return of one and the same object instance at the continuous requests*
e Selection of the suitable implementation at the interface query
e Automatic class creation depending on constructor arguments.

* |f shared=false attribute is specified for a certain type in di.xml, then a new object will
be created at the future requests.

Why is it important to have a centralized process
creating object instances?

A centralized process creating object instances decreases code coherency and lowers
the incompatibility risk in case the object realization changes.

Identify how to use DI configuration files for
customizing Magento.

Each module can have a global and an area-specific di.xml file. Area-specific di.xml files
are recommended to be applied for dependencies configuration for presentation layer,
while global file - for all the rest.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

How can you override a native class, inject your
class into another object, and use other techniques
available in di.xml (such as virtualTypes)?

Abstraction-implementation mappings and class rewrites

Abstraction-implementation mappings and class rewrites are applied in case the
constructor requests the object by its interface. ObjectManager utilizes this
configuration to resolve which implementation should be used for the current area.

<config>

<preference for="Magento\Core\Model\UrlInterface"
type="Magento\Core\Model\Url" />
</config>

A similar approach can be used to substitute not only the interfaces, but the classes
themselves.

<config>

<preference for="Magento\Core\Model\Url"
type="Vendor\Module\Model\NewUrl" />
</config>

Virtual Types

Virtual Type allows to modify any dependencies arguments and therefore modify class
behavior without changing the operation of other classes that depend on the original.

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:0ObjectManager/et
c/config.xsd">
<virtualType name="moduleConfig"
type="Magento\Core\Model\Config">
<arguments>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="type" xsi:type="string">system</argument>
</arguments>
</virtualType>
</config>

ObjectManager should never be called directly, because Magento Framework makes the
call automatically. Factory or proxy classes, as well as unit texts or static and magic
methods (wakeup, sleep) can be considered exceptions, for they are majorly generated
by the framework automatically.

Magento 2 code contains direct ObjectManager calls, which exist only for backward
compatibility and should not be used as an example.

Dependencies compilation

bin/magento setup:di:compile

Magento 2 applies a specific utilita for compiling dependencies of all classes. The
utilita creates a file that contains the dependencies of all objects for ObjectManager,
based on constructor arguments with the help of php reflection features. Such service
classes as factories, proxies and plugins, are generated as well.

1.5 Demonstrate ability to use plugins

Demonstrate how to design complex solutions
using the plugin’s life cycle. How do multiple
plugins interact, and how can their execution order
be controlled?

Magento 2 Plugin (Interceptor) is the class that allows to alter the behavior of other
classes by calling the custom mode before, after or instead of conflict method call,
allowing to minimize the probability of conflicts between various pieces of code that
concern the same functionality.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Plugin Configuration

<module_dir>/etc/di.xml

<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="urn:magento:framework:0bjectManager/et
c/config.xsd">

<type name="{ObservedType}">

<plugin name="{PluginName}" type="{PluginClassName}"

sortOrder="1" disabled="false"/>

</type>
</config>

, Where:

{ObservedType} - class name, the method that must be altered
{PluginName} - plugin name

{PluginClassName} - plugin class nhame
sortOrder - plugin call order

disabled - ability to disable the plugin

Plugin Methods

Before Methods

Before methods allow to modify target class method arguments before the method is
called.

Namespace Vendor\Module\Plugin;

class Plugin

{
public function beforeMethodName(\Vendor\Module\Model\TargetClass

$subject, $argl, $arg2, $arg3 = null)

{
return [$argl, $arg2, $arg3];

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

The name of the plugin method is concatenated ‘before’ and the method name, which
arguments must be altered. The first argument of this method is the class, the method
of which is called. The rest of the arguments correspond to the called methods
arguments, including default values. It is also possible to use “..."” token to get all the
arguments
(https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list.

new). Example:

public function beforeMyMethod($subject, ...$args)
{

return $args;

Before methods should return the arguments array, if they need to be overridden, or null,
if there is no need for that.

After Methods

After methods allow to modify the result of the target method.

Namespace Vendor\Module\Plugin;

class Plugin

{
public function afterMethodName(\Vendor\Module\Model\TargetClass

$subject, $result)
{

return $result;

The first argument, the same as before methods, is target class instance, the second is
the returned value of the original method, while the third and further are the original
method arguments.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list.new
https://www.php.net/manual/en/functions.arguments.php#functions.variable-arg-list.new
http://www.belvg.com/
mailto:contact@belvg.com

Around Methods

Namespace Vendor\Module\Plugin;

class Plugin
{
public function aroundMethodName(\Vendor\Module\Model\TargetClass
$subject, callable $proceed, $argl, $arg2, $arg3)
{
$result = $proceed($argl, $arg2, $arg3);
return $result;

Around methods allow to execute the code before and after the target method in one
place.

Sproceed argument is PHP closure, that in its turn calls the target method.

Such methods allow to completely substitute the target method.

Plugin Sorting

Plugin sortOrder parameter allows to identify what the order plugin methods will be
called in case multiple plugins are observing the same method.

Plugin1 Plugin2 Plugin3
sort order 10 20 30
before beforeMethod() beforeMethod() beforeMethod()
around aroundMethod() aroundMethod()
after afterMethod() afterMethod() afterMethod()

In this case, plugin processing is executed in the following order:

1. Plugini::beforeMethod()
2. Plugin2::beforeMethod()

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

3. Plugin2::aroundMethod() (Magento calls the first half until callable)
a. Plugin3::beforeMethod()
b. Plugin3::aroundMethod() (Magento calls the first half until callable)
i. TargetClass:method()
c. Plugin3::aroundMethod() (Magento calls the second half after callable)
d. Plugin3:afterMethod()
4. Plugin2::aroundMethod() (Magento calls the second half after callable)
Plugin2::afterMethod()
6. Plugini::afterMethod()

i

How do you debug a plugin if it doesn’t work?
Identify strengths and weaknesses of plugins.

Magento 2 generates an Interceptor class for each class that has plugins. This class
inherits the original plugins and contains the code that calls the plugins in the assigned
order. Therefore, any plugin debug can be started with the Interceptor class.

Plugins enable to modify the application behavior without the need to modify or
substitute the original classes, which allows to impact the application flow flexibly.

On the other hand, application of plugins, around methods in particular, complicates
code readability and increases stack trace, as well as the non-functioning application, if
the plugins are applied without due accuracy. If you do not call Sproceed() in around
plugin, the plugins whose sortOrder is larger than the current plugin will not be called.
The original method will not be called as well.

What are the limitations of using plugins for
customization? In which cases should plugins be
avoided?

Compared to Magento 1, class rewrites plugins do not inherit the target class, allowing
several plugins that modify one and the same method to have no conflicts with each
other. However, due to the same reasons, plugins have certain limitations.

Plugins can not be used with:

1. Final methods and classes
2. Protected/private methods

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Static methods

__construct methods

Virtual types

Objects that are instantiated before Magento\Framework\Interception is
bootstrapped

7. Objects that were initialized not with ObjectManager

o v AW

The main purpose of plugins is to modify the certain method input, output or execution.
In case the data is not modified (for instance, when order details are sent to the 3rd
party ERP), then it is recommended to apply observers instead of plugins.

1.6 Configure event observers and
scheduled jobs

Events are commonly used in applications to handle external actions or input. Each
action is interpreted as an event.

Events are part of the Event-Observer pattern. This design pattern is characterized by
objects (subjects) and their list of dependents (observers). It is a very common
programming concept that works well to decouple the observed code from the
observers. Observer is the class that implements
Magento\Framework\Event\Observerinterface interface.

According to
https://devdocs.magento.com/quides/v2.3/coding-standards/technical-quidelines.html

All values (including objects) passed to an event MUST NOT be modified in the event
observer. Instead, plugins SHOULD BE used for modifying the input or output of a
function.

Therefore, if there is a need to modify the input data, use plugins instead of events.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://devdocs.magento.com/guides/v2.3/coding-standards/technical-guidelines.html
http://www.belvg.com/
mailto:contact@belvg.com

Demonstrate how to configure observers. How do
you make your observer only be active on the
frontend or backend?

In Magento 2 there is a special event manager class -
Magento\Framework\Event\Manager that fires events. This class can be obtained
through dependency injection by defining the dependency in your constructor.

Look for the mentioned notes in the code Magento 2:
Sthis->eventManager->dispatch(‘event_name’, [myEventData' => Sevent_arguments]);

Event Observers in Magento 2 can be configured in a separate file events.xml. It should
be created in <module_dir>/etc directory, if observer is associated with globally events,
or in <module_dir>/etc/<area> (like <module_dir>/etc/frontend or
<module_dir>/etc/adminhtml) if observer to only watch for events in specific area.

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Event/etc/events
.xsd">

<event name="my_module_event">

<observer name="observer_name"

instance="Namespace\Modulename\Observer\MyObserver" />

</event>
</config>

In instance attribute we declare observer class name. This class has to implement
Magento\Framework\Event\Observerinterface::execute(Observer Sobserver) method.
The Sobserver object has an Sevent object (available through Sobserver->getEvent()),
which contains the event’'s parameters.

namespace Namespace\Modulename\Observer;

use Magento\Framework\Event\ObserverInterface;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

use Magento\Framework\Event\Observer;
class MyObserver implements ObserverInterface

{
public function _ construct() {
//You can use dependency injection
}
public function execute(Observer $observer)
{
}
}

Demonstrate how to configure a scheduled job

To demonstrate how to configure a scheduled job, we create in the module a
crontab.xml file with the similar content:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Cron:etc/cr
ontab.xsd">
<group id="default">
<job name="my_module_cron_job"
instance="Vendor\Module\Model\Cron" method="run">
<!-- Use schedule or config _path, not both -->
<schedule>0@ * * * *</schedule>
<config path>my module/my group/my_ setting</config path>
</job>
</group>
</config>

Group element determines to which group cron jobs should be tied. Group is declared in
cron_groups.xml file and contains group configurations. The events inside the group
have a general queue, while several groups can be launched simultaneously. Example:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="urn:magento:module:Magento_Cron:etc/cr
on_groups.xsd">
<group id="default">
<schedule_generate_every>15</schedule_generate_every>
<schedule_ahead_for>20</schedule_ahead_for>
<schedule_lifetime>15</schedule_lifetime>
<history_cleanup_every>10</history_cleanup_every>
<history success_lifetime>60</history_success_lifetime>
<history_failure_lifetime>4320</history_failure_lifetime>
<use_separate_process>0@</use_separate process>
</group>
</config>

Job element contains name (name of the job), instance (job class name) and method
(job method name in the class) attributes. Also, job contains schedule element
(http://www.nncron.ru/help/EN/working/cron-format.htm) or config_path
(configuration path to the schedule value).

Which parameters are used in configuration, and
how can configuration interact with server
configuration?

Magento 2 stores database configuration in core_config_data table. This configuration
can be overridden:

1. In app/etc/config.php file

2. In app/etc/env.php file

3. Inthe area variables

To learn more, follow the link:
https://devdocs.magento.com/quides/v2.3/config-quide/prod/config-reference-var-na
me.html

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.nncron.ru/help/EN/working/cron-format.htm
https://devdocs.magento.com/guides/v2.3/config-guide/prod/config-reference-var-name.html
https://devdocs.magento.com/guides/v2.3/config-guide/prod/config-reference-var-name.html
http://www.belvg.com/
mailto:contact@belvg.com

|dentify the function and proper use of automatically
available events, for example *_load_after, etc.

In Magento1 we can use of automatically available events. For example:

protected function _beforeSave()

{

Mage: :dispatchEvent($this-> eventPrefix.' save before',
$this->_ getEventData());

¥
protected function _getEventData()
{
return array(
‘data_object’ => $this,
$this-> eventObject => $this,
)
¥

This event is triggered before saving object, if it extends Mage_Core_Model_Abstract
class. When we create a new class, which extends Mage_Core_Model_Abstract, we can
declare SeventPrefix = “namespace_modulename” and use new event
namespace_module_save_before.

We have the same ability in MagentoZ2. In class
Magento\Framework\Model\AbstractModel:

public function beforeSave()

{

$this->_eventManager->dispatch($this->_eventPrefix .
_save_before', $this-> getEventData());

In Magento1 and Magento 2 we have the same automatically available events.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Models:

[$eventPrefix]_load_before
[$eventPrefix] load_after
[$eventPrefix] _save_before

[$eventPrefix]_save_after
[$eventPrefix]_save_commit_after
[$eventPrefix] delete before
[$eventPrefix] _delete_after
[$eventPrefix] _delete_commit_after

Controllers:

controller_action_predispatch_[ROUTE_NAME]
controller_action_predispatch_[FULL_ACTION_NAME]
controller_action_postdispatch_[ROUTE_NAME]
controller_action_postdispatch_[FULL_ACTION_NAME]
controller_action_layout_render_before_ [FULL_ACTION_NAME]

1.7 Utilize the CLI

Describe the usage of bin/magento commands in
the development cycle. Which commands are
available? How are commands used in the
development cycle?

Magento 2 allows you to execute numerous operations using the command line
interface. It also contains a large number of commands that allow to flush the cache,
change deployment mode or reindex the necessary index quickly. To apply the following
commands, you should:

1. Login into your Magento 2 server via SSH as Magento file system owner
$ ssh magento_user@server.com

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

2. Change directory to Magento 2 installation directory
$ cd /var/www/magento/

Afterward, we can use Magento CLI the following way:

$ bin/magento COMMAND

For example, list command will put out a list of available actions:

$ bin/magento list

Demonstrate an ability to create a deployment
process.

A standard Magento 2 deployment process includes the following steps and
commands:

Enable maintenance mode - $ bin/magento maintenance:enable
Perform database migrations - $ bin/magento setup:upgrade
Compile necessary code - $ bin/magento setup:di:compile
Publish static files-$ bin/magento setup:static-content:deploy
Disable maintenance mode - # bin/magento maintenance:disable

a s wn =

How does the application behave in different
deployment modes, and how do these behaviors
impact the deployment approach for PHP code,
frontend assets, etc.?

Magento 2 can operate in three possible modes:
1. Default - is enabled by default. It is aimed for neither development nor production
use. This is an average mode between developer and production modes.
e At the request, static files are copied into pub/static directory and

afterwards are put out from it.
Exceptions are not put out at the screen and not recorded in log files
Enabled automatic code compilation
X-Magento-* HTTP response headers are hidden.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

2. Developer - the mode for development. Static files are generated on demand. The
mode also increases the amount of debug information. Static files caching is
also disabled and static files are put out with symlinks.

e Exception and backtraces are put out at the screen

e Automatic code compilation is enabled

e X-Magento-* HTTP response headers are enabled

e XML schema validation is enabled

e Slow application operation due to automatic code compilation on the fly.

3. Production - is applied for working in production environment. Only in this mode,
the maximum operation speed is available due to the required static files
generation during the deployment, not at the request, like in other modes.

Exceptions are recorded only in log files and not put out at the screen
Static files are put out from cache (the files are generated in advance with
$ php bin/magento setup:static-content:deploy command)

e Automatic code compilation is disabled (it is executed in advance with §
php bin/magento setup:di:compile command)

e X-Magento-* HTTP response headers are hidden.

To learn the current deployment mode, enter the command:
$ bin/magento deploy:mode:show

Changing Deployment Mode

To change the current deployment mode, enter the command:
$ bin/magento deploy:mode:set {mode} [-s|--skip-compilation]

where:
e {mode} is the required mode (default, developer or production)
e --skip-compilation - is an optional parameter that allows to skip code compilation
after the deployment mode is changed.

When the deployment mode is changed, the var/cache folders will be cleared, except for

generated/metadata, generated/code, var/view_preprocessed, pub/static files
.htaccess. To avoid this, apply --skip-compilation flag.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

1.8 Demonstrate the ability to manage the
cache

Describe cache types and the tools used to manage
caches. How do you add dynamic content to pages
served from the full page cache?

Magento stores several cache types to prevent repeated data calculation or loading:

config - Various XML configurations that were collected across modules and
merged

layout - Layout building instructions

block_html - Page blocks HTML

collections - Collection data files

reflection - API interfaces reflection data

db_ddl - Results of DDL queries, such as index list, foreing keys, columns
compiled_config - Compilation configuration. It is used for caching by
Magento\Framework\Interception\PluginList\PluginList class and works with the
compiled di configuration only (generated/metadata/<area>.php).

eav - Entity types declaration cache. Stores information about entity types and
their attributes.

customer_notification - Customer Notification. At the moment, it is applied to
provide the customer with updated session.

config_integration - stores information about php interfaces
config_integration_api - stores the information about integrations (deprecated)
full_page - stores full html code of the pages with http headings
config_webservice - REST and SOAP configurations, generated WSDL file
translate - applied for data caching for Magento 2 Translate library

Out-of-the-box Magento supports two FPC types: built-in and Varnish. Varnish is
recommended to be installed and applied for production use. Before the page gets into
FPC, all its personalized content is deleted; this also applies for both built-in FPC and
Varnish.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

There are two methods to add dynamic contents for FPC:
First. For this purpose use in layout attribute cacheable=false in any block:

<referenceContainer name="content">
<block class="Magento\Checkout\Block\Onepage\Success"
name="checkout.success" template="success.phtml"” cacheable="false"/>
<block class="Magento\Checkout\Block\Registration"
name="checkout.registration" template="registration.phtml”
cacheable="false"/>
</referenceContainer>

Attribute cacheable=false makes page with this block uncacheable by FPC. But be
careful with this parameter, because if this block is located in all pages, then all these
pages will not be cached by FPC.

Second.

You could use ajax for this purpose. Commonly, Magento has two types of content:

e Public. Public content is stored server side in your reverse proxy cache storage
(e.g., file system, database, Redis, or Varnish) and is available to multiple
customers. Examples of public content include header, footer, and category
listing.

e Private. Private content is stored client side (e.g., browser) and is specific to an
individual customer. Examples of private content include shopping cart, message
and customer. The data is loaded from the server and saved to localStorage of
user’'s browser. In case the sections are invalidate, they are loaded from the
server repeatedly. This is realized by customer data JS module.

The strategy of deferring private content is perhaps best demonstrated by the following
example. Starting in Magento_Theme::view/frontend/templates/html/header.phtml, we
see the following:

<1li class="greet welcome" data-bind="scope: 'customer'">

<!-- ko if: customer().fullname -->

<span class="logged-in" data-bind="text: new String('<?=
$block->escapeHtml(__ ('Welcome, %1!', '%1"')) ?>').replace('%1’,
customer().fullname)">

<!-- /ko -->
<!-- ko ifnot: customer().fullname -->

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<span class="not-logged-in" data-bind="html:"<?=
$block->escapeHtml($welcomeMessage) ?>"'>
<?= $block->getBlockHtml('header.additional") ?>
<!-- /ko -->
</1i>

Magento has different FPC for each group of customers, applying X-Magento-Vary
Cookie for this. If the page with the specified URL and X-Magento-Vary Cookie is stored
in FPC, then it is put out to the user, saving loading time. X-Magento-Vary Cookie value
is generated using Magento\Framework\App\Http\Context class. In order to add a
custom FPC division (for instance, according to age: < 18 and >= 18), one must call
\Magento\Framework\App\Http\Context::setValue(Sname, Svalue, Sdefault method.

Describe how to operate with cache clearing. How
would you clean the cache?

There are three ways to clean the cache:
e From Admin
e Use bin/magento CLI
o bin/magento cache:clean
o bin/magento cache:flush
Execute the bin/magento setup:config:set
—-http-cache-hosts=SOME_HOST1,SOME_HOST2:PORT2 command beforehand in
order to enable cache clearing in varnish. In this command,
SOME_HOST1,SOME_HOST2:PORT?2 are the addresses of varnish services,
divided by a comma.

e Clean manually
o File cache: “rm -rf var/cache/*”, “rm -rf var/page_cache/*"
o Redis: “redis-cli flushall”
o Restart services (Varnish, Redis)

In which case would you refresh cache/flush cache
storage?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

When you clean cache, you do it by tags, and if in cache item is not associated with
cache type tag, it will never be removed from storage.

When you flush cache, you remove all cache records in storage. Sometimes it's more
preferred than clean cache.

Describe how to clear the cache programmatically.

To clean cache for specific model object, you can use:

\Magento\Framework\Event\ManagerInterface->dispatch('clean_cache_by_t
ags', ['object' => $model]);

To clean entire cache type, you can use:

\Magento\Framework\App\Cache\TypeListInterface->cleanType($typeCode)

To invalidate entire cache type, you can use:

\Magento\Framework\App\Cache\TypeListInterface->invalidate($typeCode)

The cache tags are generated at block level, with each block class implementing the
Identitylnterface which means they must implement a getldentities method, which must
return a unique identifier. For example:

namespace Magento\Cms\Block;

use Magento\Framework\View\Element\AbstractBlock;
use Magento\Framework\DataObject\IdentityInterface;

class Page extends AbstractBlock implements IdentityInterface

{

public function getIdentities()

{
return [\Magento\Cms\Model\Page::CACHE_TAG . ' '

$this->getPage()->getId()];
¥

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

When the front controller response is ready, the FPC combines all the block tags from
the layout, and then adds them to the response in a X-Magento-Tags custom HTTP
header. The different FPC options then handle the header differently. Varnish stores the
header along with the rest of the page when it is cached, so no additional work is
required. The built-in option however needs some additional code to pull the tags back
out of the X-Magento-Tags header so that they can be associated with the response
when it is stored in the configured storage (e.g. Redis).

What mechanisms are available for clearing all or
part of the cache?

You can clean cache from admin panel. System->Cache Management

Cache Management Q D A -

RiloR AR SRS W

Refresh | = SUBMIT 7 records found

Cache Type Togs status

Configuration

& across modules and merged conFiG [ENABLED]
LAYOUT_GENERAL_CACHE_TAG [ENABLED

BLOCK_HTML [enasieo

COLLECTION_DATA [ENABLED]
REFLECTION [ENABLED]
DB_DDL [ENABLED]
INFSCRO [oisasien
eav [ENABLED
CUSTOMER_NOTIFICATICN [EenmBep |
MSP_APIENHANCER TAG [DISABLED
TARGET RULE [ENABLED

e INVALIDATED

INTEGRATION [ENABLED |

INTEGRATION_APLCONFIG | ENABLED]

TRANSLATE [ENABLED

In this page you can clean/enable/disable cache by cache types or full cache. Also you
can clean cache from console:

bin/magento cache:clean -clean cache,

bin/magento cache:clean <cache_type> - clean cache only for <cache_type>
bin/magento cache:status -you could see statuses and types of cache
bin/magento cache:enable <cache_type> - enable cache

bin/magento cache:flush - flush cache

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 2: Request Flow Processing

2.1 Utilize modes and application
initialization

Identify the steps for application initialization.

Step 1

The request to index.php (entry point) in the site root or in pub/index.php. In developer
mode, index.php in the website root is commonly used as an entry point, while for
production mode, pub/index.php is recommended for production mode.

Step 2

Connect bootstrap.php file

try {
require _ DIR__ . '/app/bootstrap.php';
} catch (\Exception $e) {
where autoload.php is connected (autoloader is loaded)
require_once _ DIR_ . '/autoload.php';

Step 3

Autoloader allows to call create() method of the Bootstrap class

$bootstrap = \Magento\Framework\App\Bootstrap::create(BP, $_SERVER);
That returns Bootstrap object, that, in its turn, contains
ObjectManagerFactory object.
public static function create($rootDir, array $initParams,
ObjectManagerFactory $factory = null)
{

self::populateAutoloader($rootDir, $initParams);

if ($factory === null) {

$factory = self::createObjectManagerFactory($rootDir,

$initParams);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

}

return new self($factory, $rootDir, $initParams);

Step 4

Then, createApplication() of the Bootstrap object is called.

Sapp = Sbhootstrap->createApplication(\Magento\Framework\App\Http::class);

In this method, an instance of the Magento\Framework\App\Http class is created with
the help of ObjectManager and is returned into index.php.

public function createApplication($type, $arguments = [])

{
try {
$application = $this->objectManager->create($type,
$arguments);
if (!($application instanceof AppInterface)) {
throw new \InvalidArgumentException("The provided class
doesn't implement AppInterface: {$typel}");

}

return $application;
} catch (\Exception $e) {
$this->terminate($e);

Step 5

Then, call run() method of the Bootstrap object to launch the application that will call
launch() method of the application object.

$bootstrap->run($app);

public function run(AppInterface $application)

{
try {
try {
\Magento\Framework\Profiler::start('magento');

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this->initErrorHandler();
$this->assertMaintenance();
$this->assertInstalled();

$response = $application->launch();
$response->sendResponse();
\Magento\Framework\Profiler: :stop('magento');

} catch (\Exception $e) {
\Magento\Framework\Profiler: :stop('magento’);
if (!$application->catchException($this, $e)) {

throw $e;

}
} catch (\Exception $e) {
$this->terminate($e);

Step 6

An instance of Http object performs the initial routing; as a result, it determines the area
from URL and sets in Sthis->_state->setAreaCode(SareaCode). After the area is set, the
required configuration for that area is loaded.

Then, an object of \Magento\Framework\App\FrontController class is created and its
method - dispatch(Sthis->_request) - is called, to which request is passed.

public function launch()

{

$areaCode =
$this->_arealList->getCodeByFrontName($this-> request->getFrontName())

)

$this-> state->setAreaCode($areaCode);

$this->_objectManager->configure($this-> configlLoader->load($areaCode

))s
/** @var \Magento\Framework\App\FrontControllerInterface

$frontController */
$frontController =

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this-> objectManager->get(\Magento\Framework\App\FrontControllerInte
rface::class);
$result = $frontController->dispatch($this-> request);
// TODO: Temporary solution until all controllers return
ResultInterface (MAGETWO-28359)
if ($result instanceof ResultInterface) {
$this->registry->register('use_page cache_plugin', true,
true);
$result->renderResult($this-> response);
} elseif ($result instanceof HttpInterface) {
$this-> response = $result;
} else {
throw new \InvalidArgumentException('Invalid return type');
}
// This event gives possibility to launch something before
sending output (allow cookie setting)
$eventParams = ['request’' => $this-> request, 'response’ =>
$this-> response];

$this-> eventManager->dispatch('controller front_send response_before

', $eventParams);
return $this->_ response;

Step 7

In dispatch() method of the FrontCotroller class the current router and the current
action controller are defined. Then, dispatch() method is called from action controller.

public function dispatch(RequestInterface $request)

{
\Magento\Framework\Profiler::start('routers match"');
$routingCycleCounter = 9;
$result = null;
while (!$request->isDispatched() && $routingCycleCounter++ < 100)
{

/** @var \Magento\Framework\App\RouterInterface $router */

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

foreach ($this-> routerList as $router) {
try {
$actionInstance = $router->match($request);
if ($actionInstance) {
$request->setDispatched(true);
$this->response->setNoCacheHeaders();
if ($actionInstance instanceof
\Magento\Framework\App\Action\AbstractAction) {
$result =
$actionInstance->dispatch($request);
} else {
$result = $actionInstance->execute();

}

break;
}
} catch (\Magento\Framework\Exception\NotFoundException
$e) {
$request->initForward();
$request->setActionName('noroute');
$request->setDispatched(false);
break;

}

\Magento\Framework\Profiler: :stop('routers match"');
if ($routingCycleCounter > 100) {
throw new \LogicException('Front controller reached 100
router match iterations');

}

return $result;

Step 8

Dispatch() method is implemented in Magento\Framework\App\Action\Action.php.
When we create custom actions, they are inherited from this class.

Action controller returns the object that realizes Resultinterface via execute() method.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function dispatch(RequestInterface $request)
{
$this-> request = $request;
$profilerkKey = "'CONTROLLER_ACTION:'
$request->getFullActionName();
$eventParameters = ['controller_action' => $this, 'request' =>
$request];
$this-> eventManager->dispatch('controller _action predispatch’,
$eventParameters);
$this->_eventManager->dispatch('controller_action_predispatch '
$request->getRouteName(), $eventParameters);
$this-> eventManager->dispatch(
'controller_action_predispatch_’
$request->getFullActionName(),
$eventParameters
)
\Magento\Framework\Profiler: :start($profilerKey);

$result = null;
if ($request->isDispatched() && !$this-> actionFlag->get('’,
self::FLAG_NO DISPATCH)) {
\Magento\Framework\Profiler::start('action_body"');
$result = $this->execute();
\Magento\Framework\Profiler: :start('postdispatch"');
if (!$this-> actionFlag->get('’,
self::FLAG_NO_POST_DISPATCH)) {
$this->_eventManager->dispatch(
‘controller_action_postdispatch_
$request->getFullActionName(),
$eventParameters

)
$this-> eventManager->dispatch(
‘controller_action_postdispatch_'
$request->getRouteName(),
$eventParameters

)3

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this-> eventManager->dispatch('controller_action_postdispatch’,
$eventParameters);
}
\Magento\Framework\Profiler: :stop('postdispatch"');
\Magento\Framework\Profiler: :stop('action_body"');
}
\Magento\Framework\Profiler: :stop($profilerKey);
return $result ?: $this-> response;

Step 9
FrontController returns Resultinterface into Application Instance, which puts out a
response.

public function launch()
{
$areaCode =
$this->_arealList->getCodeByFrontName($this-> request->getFrontName())

)

$this-> state->setAreaCode($areaCode);

$this->_objectManager->configure($this->_ configlLoader->load($areaCode
))s
/** @var \Magento\Framework\App\FrontControllerInterface
$frontController */
$frontController =
$this->_objectManager->get(\Magento\Framework\App\FrontControllerInte
rface::class);
$result = $frontController->dispatch($this->_request);
// TODO: Temporary solution until all controllers return
ResultInterface (MAGETWO-28359)
if ($result instanceof ResultInterface) {
$this->registry->register('use page cache plugin', true,
true);
$result->renderResult($this-> response);
} elseif ($result instanceof HttpInterface) {

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

How would you design a customization that should
act on every request and capture output data
regardless of the controller?

To receive data from each request, create observer for controller_action_postdispatch
event (Magento\Framework\App\Action\Action::dispatch()).

Realization example - class
Magento\Customer\Observer\Visitor\SaveByRequestObserver.

Describe how to use Magento modes

Magento 2 can be launched in one of the three modes: developer, production and
default. The main difference between the modes is the way Magento will get access to
static files (CSS, JavaScript files, images, etc.)

There is also a maintenance mode, but it is aimed at denying access to the system.

To view the current mode, use the CLI command bin/magento deploy:mode:show. To
switch modes, use bin/magento deploy:mode:set

What are pros and cons of using developer
mode/production mode?

Developer mode

In Developer mode, static view files are generated every time they are requested. The
symlinks of them are written to the pub/static directory. If you will change content of JS
file, it will be updated in pub/static too because of symlink.

Uncaught exceptions are displayed in the browser instead of being logged. An exception
is thrown whenever an event subscriber cannot be invoked.

Magento 2 validates XML files using schemas in this mode.

Use the Developer mode while developing customizations or extensions. The main
benefit of this mode is that error messages are visible to you. It should not be used in
production because it impacts the performance.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Production mode

You should run Magento in Production mode once it is deployed to a production server.
Production mode provides the highest performance in Magento 2.

The most important aspect of this mode is that errors are logged to the file system and
are never displayed to the user. In this mode, static view files are not created on the fly
when they are requested; instead, they have to be deployed to the pub/static directory
using the command-line tool. Any changes to view files require running the deploy tool
again.

When do you use default mode?

Default mode

Default mode is how the Magento software operates if no other mode is specified.

In this mode, errors are logged to the files in var/reports and are never shown to the
user. Static view files are materialized on the fly and then cached.

In contrast to the developer mode, view file changes are not visible until the generated
static view files are cleared.Default mode is not optimized for a production environment,
primarily because of the adverse performance impact of static files being materialized
on the fly rather than generating and deploying them beforehand. In other words,
creating static files on the fly and caching them has a greater performance impact than
generating them using the static file creation command line tool.

How do you enable/disable maintenance mode?

bin/magento maintenance:enable
bin/magento maintenance:disable

Describe front controller responsibilities

- Gathering all routers (injected into the constructor using DI)
- Finding a matching controller/router
- Obtaining generated HTML to the response object

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

In which situations will the front controller be
involved in execution, and how can it be used in the
scope of customizations?

Front controllers are the first step in handling requests and work flows across all pages.
Basically, the front controller controls all other controllers. In Magento 2, it gathers
routes, matches controllers, and obtains the HTML generated to the response object. It
is not used in the console.

2.2 Demonstrate ability to process URLs in
Magento

Describe how Magento processes a given URL. How
do you identify which module and controller
corresponds to a given URL?

Front Controller

Routing in Magento 2 is based on Front Controller Pattern. Front Controller is a design
pattern, in which one component is responsible for processing all the incoming
requests, redirecting them to the corresponding components, further results processing
and returning the result to the browser.

FrontController iterates via the available routers and, if the action responsible for the
current URL is successfully found, calls the
\Magento\Framework\App\Action\AbstractAction::dispatch method.

Routers

All routers in Magento 2 should implement \Magento\Framework\App\RouterInterface
interface and define \Magento\Framework\App\RouterInterface::match method. This

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

method is responsible for matching and processing URL requests. In case of a
successful match, router returns the corresponding action instance. When the needed
action is not found, Front Controller is passed to the next router.

Magento 2 has four routers:

1. Base Router (\Magento\Framework\App\Router\Base) - sets module front name,
controller and action names, controller module and route name if found.
Processes standard Magento URLs.

2. CMS Router (\Magento\Cms\Controller\Router) - applied for processing CMS
pages. Sets module name to “cms”, controller name to “page”, action name to
“view” and page id depending on the requested page. Then, it forwards request
but won't dispatch it. This will result in the next cycle of router checks by Front
Controller, where Base Router, based on the set path, will call
\Magento\Cms\Controller\Page\View that will indicate the required page.

3. UrlRewrite Router (\Magento\UrIRewrite\Controller\Router) - responsible for URL
rewrites. Applies Url Finder to find a corresponding URL in the database and then
returns forward the same way as CMS Router.

4. Default Router (\Magento\Framework\App\Router\DefaultRouter) - is applied
when other routers are unable to find the suitable action; it is also responsible for
404 page.

In order to find out which module, controller and action are applied now, call the
following Srequest methods (\Magento\Framework\App\Request\Http):

$request->getControllerModule() - get controller module (e.g. ‘Magento_Catalog’)
$request->getControllerName() - get controller name (e.g. ‘product’)
$request->getActionName() - get action name (e.g. ‘view’)

For instance, to define the current module, controller and action, temporarily add at the
end of index.php file (or pub/index.php) the following code:

$request =

\Magento\Framework\App\ObjectManager: :getInstance()->get('\Magento\Fr
amework\App\Request\Http');

var_dump($request->getControllerModule(),
$request->getControllerName(), $request->getActionName());

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

What is necessary to create a custom URL
structure?

To create a custom router, first add it to \Magento\Framework\App\RouterList that
passes into Front Controller and has all the available routers in the proper order. For
this, use di.xml file in our module.

<module_dir>/etc/di.xml:

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="urn:magento:framework:0bjectManager/et
c/config.xsd">
<type name="Magento\Framework\App\RouterList">
<arguments>
<argument name="routerlList" xsi:type="array">
<item name="customrouter" xsi:type="array">
<item name="class"
xsi:type="string">Vendor\Module\Controller\CustomRouter</item>
<item name="disable"
xsi:type="boolean">false</item>
<item name="sortOrder" xsi:type="string">22</item>
</item>
</argument>
</arguments>
</type>
</config>

Afterward, create a CustomRouter class. <module_dir>/Controller/CustomRouter.php:

<?php
namespace Vendor\Module\Controller;

use Magento\Framework\App\ActionFactory;
use Magento\Framework\App\RouterInterface;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

class CustomRouter implements RouterInterface

{

protected $actionFactory;

public function __ construct(
ActionFactory $actionFactory

)

$this->actionFactory = $actionFactory;

public function match(\Magento\Framework\App\RequestInterface

$request)
{
$identifier = trim($request->getPathInfo(), '/');
if (strpos($identifier, 'customrouter-test') !== false) {
$request->setPathInfo('/customrouter/index/index/");
// or

$request->setModuleName(' customrouter');
$request->setControllerName('index");
$request->setActionName("index");
$request->setControllerModule("Module Vendor');
$request->setRouteName(' customrouter');
$request->setParams(["paraml’ => ‘value']);

} else {
return false;

return
$this->actionFactory->create('Magento\Framework\App\Action\Forward");

// or

return
$this->actionFactory->create('Vendor\Module\Controller\Index\Index");

}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

If we applied Forward Action in router, create a routes.xml file to allow Base Router to
configure request and find Action Class. If you configured the request and specified
Action Class yourself, then there is no need to create such file.
<module_dir>/etc/<area>/routes.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:App/etc/routes.x
sd">
<router id="standard">
<route id="customrouter" frontName="customrouter">
<module name="Vendor_Module" />
</route>
</router>
</config>

Specify standard in Router id: for frontend, for adminhtml - admin. In this file you can
also specify the configuration for another router. This configuration is not passed into
the router class automatically; instead, it needs to be loaded with
\Magento\Framework\App\Route\Config\Reader class. Base Router
(\Magento\Framework\App\Router\Base) applies
\Magento\Framework\App\Route\Config class for loading. This class loads the
configuration only for default router of an area (default router is set via di.xml) and
stores it in cache.

Route id is the id of the route. It is applied, for instance, for layout files naming
({route_id}_{controller}_{action}.xml). To get the ID, use Srequest->getRouteName().

Route frontName is the part of URL:

{magento-base-url}/{frontName}/{controller}/{action}. To get it, use
Srequest->getModuleName().

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe the URL rewrite process and its role in
creating user-friendly URLSs.

URL Rewrites allow to put our catalog URLs (/catalog/product/id/123) in an
easy-to-understand way (/black-tshirt.html). UrIRewrite Router
(\Magento\UrIRewrite\Controller\Router) is responsible for their processing; it searches
for a necessary URL in the database and, when it is found, it calls
Srequest->setPathinfo('/' . Srewrite->getTargetPath()) first, and then - Forward Action.
not-user-friendly path (like catalog/product/id/123) are stored in Target Path.

Finding matching URL rewrite

\Magento\UrIRewrite\Controller\Router::getRewrite method is responsible for database
URL search.

protected function getRewrite($requestPath, $storeld)

{
return $this->urlFinder->findOneByData([

UrlRewrite::REQUEST_PATH => ltrim($requestPath, '/'),
UrlRewrite::STORE_ID => $storeld,

1);

The method searches for a suitable URL Rewrite in url_rewrites table, based on request
path and current store ID. In case the search is successful,
\Magento\UrIRewrite\Service\V1\Data\UrlRewrite object is returned.

How are user-friendly URLs established, and how
are they customized?

Generating URL rewrite

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

To create, modify or delete URL rewrites for catalog entities, apply
Magento_CatalogUrlRewrite module. This module contains observers, responsible for
catalog entities modification events. To clarify, let us make an example of URL Rewrite
processing at the event of saving a product.

The process begins in observer method
\Magento\CatalogUrIRewrite\Observer\ProductProcessUrIRewriteSavingObserver,
called at the catalog_product_save_after event.

Events.xml

<event name="catalog product_save_ after">

<observer name="process_url rewrite_saving"
instance="Magento\CatalogUrlRewrite\Observer\ProductProcessUrlRewrite
SavingObserver"/>
</event>

public function execute(\Magento\Framework\Event\Observer $observer)
{

/** @var Product $product */

$product = $observer->getEvent()->getProduct();

if ($product->dataHasChangedFor('url key")
|| $product->getIsChangedCategories()
|| $product->getIsChangedWebsites()
|| $product->dataHasChangedFor('visibility")
) |
$this->urlPersist->deleteByData([
UrlRewrite::ENTITY_ID => $product->getId(),
UrlRewrite::ENTITY_TYPE =>
ProductUrlRewriteGenerator: :ENTITY_TYPE,
UrlRewrite::REDIRECT _TYPE => 0,
UrlRewrite::STORE_ID => $product->getStoreld()

1);

if ($product->isVisibleInSiteVisibility()) {

$this->urlPersist->replace($this->productUrlRewriteGenerator->generat

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e($product));
}

After product model is acquired from observer, an assessment is run to determine
whether the product url_key and visibility have modified, as well as whether the
relationship between categories and stores have changed.

If certain elements have changed, then the current URL rewrites for this product are
deleted using \Magento\UrIRewrite\Model\Storage\DbStorage::deleteByData method.
Afterward, if product settings allow its display,

\Magento\CatalogUrIRewrite\Model\ProductUrIRewriteGenerator::.generate method is
called.

public function generate(Product $product, $rootCategoryIld = null)

{
if ($product->getVisibility() ==
Visibility::VISIBILITY_NOT_VISIBLE) {
return [];

$storeld = $product->getStoreld();

$productCategories = $product->getCategoryCollection()
->addAttributeToSelect('url key')
->addAttributeToSelect('url path');

$urls = $this->isGlobalScope($storeld)

? $this->generateForGlobalScope($productCategories, $product,
$rootCategoryld)

: $this->generateForSpecificStoreView($storeld,
$productCategories, $product, $rootCategoryld);

return $urls;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

After product visibility is checked, the method gets the collection of all categories that
the product is associated with. Then, the dependencies of the current scope call
\Magento\CatalogUrIRewrite\Model\ProductUrIRewriteGenerator::generateForGlobalSc
ope or
\Magento\CatalogUrIRewrite\Model\ProductUrIRewriteGenerator::generateForSpecificS
toreView methods.

Consider the global scope situation.

protected function generateForGlobalScope($productCategories,
$product = null, $rootCategoryId = null)

{
return
$this->getProductScopeRewriteGenerator()->generateForGlobalScope(
$productCategories,
$product,
$rootCategoryld
)
}

public function generateForGlobalScope($productCategories, Product
$product, $rootCategoryId = null)

{
$productId = $product->getEntityId();

$mergeDataProvider = clone $this->mergeDataProviderPrototype;

foreach ($product->getStorelds() as $id) {
if (!$this->isGlobalScope($id) &&

I$this->storeViewService->doesEntityHaveOverriddenUrlKeyForStore(

$id,

$productlId,

Product::ENTITY
) A

$mergeDataProvider->merge(
$this->generateForSpecificStoreView($id,
$productCategories, $product, $rootCategoryId)

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

)5

return $mergeDataProvider->getData();

For every available store,
\Magento\CatalogUrIRewrite\Model\ProductScopeRewriteGenerator::generateForGloba
IScope method checks whether a product url_key is duplicated and calls url rewrite
generation for this store. As url rewrites for all the available stores are created, they are
united in a single array with the \Magento\UrIRewrite\Model\MergeDataProvider class
object.

public function generateForSpecificStoreView($storeld,
$productCategories, Product $product, $rootCategoryIld = null)

{

$mergeDataProvider = clone $this->mergeDataProviderPrototype;
$categories = [];
foreach ($productCategories as $category) {
if (!$this->isCategoryProperForGenerating($category,
$storeld)) {
continue;

// category should be loaded per appropriate store if category's URL key has been
changed

$categories[] = $this->getCategoryWithOverriddenUrlKey($storeld,
$category);

}

$productCategories =
$this->objectRegistryFactory->create(['entities' => $categories]);

$mergeDataProvider->merge(

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this->canonicalUrlRewriteGenerator->generate($storeld,
$product)
)
$mergeDataProvider->merge(
$this->categoriesUrlRewriteGenerator->generate($storeld,
$product, $productCategories)
)
$mergeDataProvider->merge(
$this->currentUrlRewritesRegenerator->generate(
$storeld,
$product,
$productCategories,
$rootCategoryld

)
$mergeDataProvider->merge(
$this->anchorUrlRewriteGenerator->generate($storeld, $product,
$productCategories)
)
$mergeDataProvider->merge(
$this->currentUrlRewritesRegenerator->generateAnchor(
$storeld,
$product,
$productCategories,
$rootCategoryld

)s

return $mergeDataProvider->getData();

\Magento\CatalogUrIRewrite\Model\ProductScopeRewriteGenerator::generateForSpeci
ficStoreView method for each of the product categories receives a specific url_key for
the current core. Then, with the help of \Magento\UrIRewrite\Model\MergeDataProvider
instance, it merges the results of several calls:
a. \Magento\CatalogUrIRewrite\Model\Product\CanonicalUrlIRewriteGenerator::gen
erate - creates URL Rewrite that does not contain categories.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

b. \Magento\CatalogUrIRewrite\Model\Product\CategoriesUrIRewriteGenerator::ge
nerate - creates URL Rewrite that includes all the possible categories.

c. \Magento\CatalogUrIRewrite\Model\Product\CurrentUrIRewritesRegenerator::ge
nerate - creates URL Rewrites, including all the possible URL rewrites for the
current entity (e.g. custom URL rewrites)

d. \Magento\CatalogUrIRewrite\Model\Product\AnchorUrlRewriteGenerator::genera
te - generates URL Rewrites for anchor categories.

e. \Magento\CatalogUrIRewrite\Model\Product\CurrentUrIRewritesRegenerator::ge
nerateAnchor generates URL Rewrites for anchor categories taking into account
the available URL rewrites.

As a result, all the methods are united in a single array and are returned to
\Magento\UrIRewrite\Model\Storage\AbstractStorage::replace method, responsible for
URL Rewrites persistence.

Describe how action controllers and results
function.

Controllers

Controllers in Magento 2 differ from the typical MVC applications’ controllers. In MVC
applications, controller is a class, while action is the method of this class. In Magento 2,
controller is a folder (or php namespace), while action is a class, located in this folder
(in this php namespace). Execute method of the action returns the result object and
occasionally processes input POST data. All actions inherit
\Magento\Framework\App\Action\Action class.

Search and initialization of the needed action is performed in router. For instance, in
Base Router:

public function match(\Magento\Framework\App\RequestInterface
$request)
{

$params = $this->parseRequest($request);

return $this->matchAction($request, $params);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Framework\App\Router\Base::parseRequest method is responsible for
dividing the requested URL into segments, while
\Magento\Framework\App\Router\Base::matchAction method is looking for a suitable
action.

protected function
matchAction(\Magento\Framework\App\RequestInterface $request, array
$params)
{

$moduleFrontName = $this->matchModuleFrontName($request,
$params['moduleFrontName']);

if (empty($moduleFrontName)) {

return null;

/**
* Searching router args by module name from route using it as key
*/
$modules =
$this-> routeConfig->getModulesByFrontName($moduleFrontName);

if (empty($modules) === true) {
return null;
}
/**
* Going through modules to find appropriate controller
*/

$currentModuleName = null;
$actionPath = null;
$action = null;
$actionInstance = null;

$actionPath = $this->matchActionPath($request,

$params['actionPath']);
$action = $request->getActionName() ?: ($params['actionName'] ?:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this->_ defaultPath->getPart('action'));
$this->_ checkShouldBeSecure($request, '/' . $moduleFrontName . '/’
. $actionPath . '/' . $action);

foreach ($modules as $moduleName) {
$currentModuleName = $moduleName;

$actionClassName = $this->actionList->get($moduleName,
$this->pathPrefix, $actionPath, $action);
if (!$actionClassName || !is_subclass_of($actionClassName,
$this->actionInterface)) {
continue;

$actionInstance =
$this->actionFactory->create($actionClassName);
break;

if (null == $actionInstance) {
$actionInstance =
$this->getNotFoundAction($currentModuleName);
if ($actionInstance === null) {
return null;

}

$action = 'noroute’;

// set values only after all the checks are done
$request->setModuleName($moduleFrontName) ;
$request->setControllerName($actionPath);
$request->setActionName($action);
$request->setControllerModule($currentModuleName);

$request->setRouteName($this->_routeConfig->getRouteByFrontName($modu

leFrontName));
if (isset($params['variables'])) {

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$request->setParams($params[‘'variables']);

}

return $actionInstance;

Each URL segment contains the information for the required action search. The
segments in URL can be presented the following way:

{routeFrontName}/{controllerName}/{actionName}

Where:

{routeFrontName} - route front name as set in routes.xml file
{controllerName} - name of the controller

{actionName} - name of the action

For URL of custom-module/info/product kind
The route to the action class:

<module _dir>/Controller/Info/Product.php

How do controllers interact with another?

Forward Result

Forward Result (\Magento\Framework\Controller\Result\Forward) - allows to pass
request processing to another controller without a redirect.

public function _ construct(
Magento\Framework\Controller\Result\Forward\Factory
$resultForwardFactory

)

$this->resultForwardFactory = $resultForwardFactory;

public function execute()

{

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$result = $this->resultForwardFactory->create();
$result->forward('noroute");
return $result;

Redirect Result

Redirect Result (\Magento\Framework\Controller\Result\Redirect) - allows to redirect
the browser to another URL.

public function _ construct(
Magento\Framework\Controller\Result\Redirect\Factory
$resultRedirectFactory

)

$this->resultRedirectFactory = $resultRedirectFactory;

}

public function execute()

{
$result = $this->resultRedirectFactory->create();
$result->setPath('*/*/index");
return $result;

}

How are different response types generated?

Responses

Action in Magento 2 can return several response types depending on its purpose and
desired result.

Page Result

Page Result (\Magento\Framework\View\Result\Page) is the most common response
type. Returning the object, Magento calls its renderResult method that performs page
rendering based on the corresponding XML layout handle.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function _ construct(
$pageFactory Magento\Framework\View\Result\PageFactory

) o
$this->pageResultFactory = $pageFactory
}
public function execute()
{
return $this->pageResultFactory->create();
}

JSON Result

JSON Result (\Magento\Framework\Controller\Result\Json) - allows to return the
response in JSON format. Can be applied in APl or AJAX requests.

public function _ construct(
Magento\Framework\Controller\Result\JsonFactory

$jsonResultFactory,
) {
$this->jsonResultFactory = $jsonResultFactory;
}
public function execute()
{
$result = $this->jsonResultFactory();
$class = new Class;
$class->data = value;
$result->setData($class);
return $result;
}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Raw Result

Raw Result (\Magento\Framework\Controller\Result\Raw) is utilized if you need to
return the results to the browser as

is. public function _ construct(
Magento\Framework\Controller\Result\Raw $rawResultFactory ,

) o
$this->rawResultFactory = $rawResultFactory;

}

public function execute()

{
$result = $this->rawResultFactory->create();
$result->setHeader('Content-Type', 'text/xml');
$result->setContents('<root><block></block></root>);
return $result;

}

2.3 Demonstrate ability to customize
request routing

Describe request routing and flow in Magento.
When is it necessary to create a new router or to
customize existing routers?

In web applications, such as Magento, routing is the act of providing data from a URL
request to the appropriate class for processing. Magento routing uses the following
flow:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

index.php -> HTTP application -> FrontController -> Routing -> Action processing -> etc

The need to create a new router or modify the current one may appear when one needs
to change the default Magento 2 URLs (processed by Base Router) for the custom ones,
for instance, /belvg/index/mypage on /mypage.

How do you handle custom 404 pages?

This is how an out-of-the-box Magento 404 page looks. However, some store owners
wish to have a custom 404 page, and in Magento 2, this is not a problem, for the
platform provides a very flexible tool for modifying this element.

Default welcome msg! SignIn or Create an Account

Q L U M A Search entire store here... W

What's New Women Men Gear Training Sale

Whoops, our bad...

The page you requested was not found, and we have a fine guess why. Compare Products
= If you typed the URL directly, please make sure the spelling is correct.

You h te 1 i
& Ifyou clicked on a link to get here, the link is outdated. Ui fiavs notems o compare

What can you do?

Wi
Have no fear, help is nearl There are many ways you can get back on track with Magento Store. My Wish List

* Go back to the previous page. You have no items in your wish list
* Use the search bar at the top of the page to search for your products.

* Follow these links to get you back on track!
Store Home | My Account

Aboutus Privacy and Cookie Policy B4 Enter your email address
Customer Service Search Terms

Orders and Returns

Advanced Search

Contact Us

Copyright © 2013-present Magento, Inc. All rights reserved

To modify the “Not Found” (404 error) page, log in to the admin panel and navigate the
following path: Store -> Configuration-> General -> Web -> Default pages -> CMS No
Route Page to check what CMS page is set in the configurations.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

storeView: Default Config + (7] Save Config

GENERAL 2 Url Options ©

General Search Engine Optimization
web Base URLs ©

Cl cy Setl
HrEng Ry Base URLS (Secure) ©

Store Emall Addresses
Default Pages

Default Web URL 7| Use system value

CMS Home Page v Use system value
Content Management
Default No-route URL | Use system value

New Relic Reporting
CMS No Route Page

Advanced Reporting /
€MS No Cookies Page

CATALOG - Show Breadcrumbs for CMS Pages

404 Not Found - Use

v/ Use system value

7 Use system value

CUSTOMERS ~

Default Cookie Settings (@)

Pages Q A & annv
Add New Page
Q W cilters @ DefaultVien ~ £ columns
~ | 5records found 20 | v |perpage 1| on

1 404 Nt Found no-route 2 columns with right bar Al Store Views Enabled May 22, 2018 3:29:45 AM

page 1 bled
1 colur rabled
4 i n-mod 1 colum Enabled May 22,2018 3:32:11 AM
B 1 colum Enabled May 22,2018 33211 AM
2 1 colur Al Store Views Enabled May 22, 2018 3:32:11 AM May 22, 2018 33211 AM
D co Mag

Open 404 page settings and modify the page the way you find necessary. You can also
create a custom 404 page and set it up the No Route page settings. If you have a
Magento multistore, a custom 404 page is a must, because for each store Not Found
page contents will differ.

Create a new CMS page. When creating a new page, do not forget to specify Design ->
Layout. If there is a need to insert html code into the page content, disable the wysiwyg
editor. Empty Page Layout is used by default.

For this example, we used the following resource:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

https://codepen.io/sqfreakz/pen/GJRJOY.
Then, copy the code into the CMS page content.

404 not found GERMANY store & Back to register or connect an account Delete Page Reset Save and Continue Edit

Show / Hide Editor | Insert Widget. Insert Image... Insert Variable...

<rdiv>
<div class="c">
<dlv class="_404">404</dIv>

E PAGE</div>

OT FOUND</div>

ACK TO MARS</div>

<style xml="spa; -

@import url(hitps://fonts.googleapis. com/ess2family=apensans:500);
body{

i5-serlf;

%
max-helght:700px;
overflow: hidden;

Search Engine Optimization ©
Page in Websites ©
Design %)
Layout Empty v
.

Afterward, switch to the needed store in the No Route Rage settings and select a new
CMS page.

Q A X admin +

Configuration
Default Config

Main Website

Store View: Default StoreView a o Save Config
]
|

GENERAL 5 Url Options

Default Store View

£ stores Configurarion \
General Search Engine Optimization ©

Meh Base URLs ®

currency setu
TIRNSY el Base URLs (Secure) ©
Store Emall Addresses .
@

Default Pages

Contacts
Default Web URL v| Use Website
Content Management
CMS Home Page . .] Use Website
New Relic Reporting
Default No-routa URL | Use Website
cATALOG v
/MS NoRoute Page | 404 not found GERMANY store ¥ Use Website
CUSTOMERS v CMS No Caokies Page] Use Website

SALES 4 Show Breadcrumbs for CMS Pages = v Use Website

Press Save Config button. As a result, you will get the following custom 404 page.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://codepen.io/sqfreakz/pen/GJRJOY
http://www.belvg.com/
mailto:contact@belvg.com

C 0 | ® Notsecure | mage224.loc/examples/mypage-that-1-cannot-found o {z‘ & O Qo @

404 not found

& 404

THE PAGE

WAS NOT FOUND

BACK TO MARS

How to create a custom noRoute handler

Magento also allows to create a custom noRoute handler. Let us make an example of
creating an alternative to 404 error page. This will be a noRoute page redirect to the
search page, where request path will serve as a search query.

To add a new “noRoute” handler, add to the etc/frontend/di.xml of your module the
following:

<type name="Magento\Framework\App\Router\NoRouteHandlerList">
<arguments>
<argument name="handlerClassesList" xsi:type="array">
<item name="custombvg" xsi:type="array">
<item name="class"
xsi:type="string">BelVG\CustomNoRoute\App\Router\NoRouteHandler</item
>
<item name="sortOrder" xsi:type="string">80</item>
</item>
</argument>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</arguments>
</type>

Afterward, create a custom noRoute handler and add the logic that would execute the
redirect.

2.4 Determine the layout initialization
process

Determine how layout is compiled. How would you
debug your layout.xml files and verify that the right
layout instructions are used?

\Magento\Framework\View\Layout::build() is called
\Magento\Framework\View\Layout\Builder::build() is called
\Magento\Framework\View\Model\Layout\Merge::load() is called

Handles from the var Shandles to the protected field Shandles are added.
Layout for the current handles is loaded from the cache. In case the layout is not
in the cache, then it is generated for each handle the following way, united and
stored in cache:

a. Layout for all handles of the current theme is loaded from cache. In case
there is no layout, it is generated the following way and then stored in
cache:

i. A physical theme, based on the current theme, is loaded. Physical
is the theme that has a designated folder and which is loaded via
registration.php. There are TYPE_PHYSICAL=0, TYPE_VIRTUAL=1,
TYPE_STAGING=2 types. Types are stored in type column in the
theme table at the database.

ii. The search of all *.xml files in the folders layout, page_layout in all
enabled modules and current themes (current themes = current
theme + all parent themes of it) is executed.

arn =

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

iii. Each found file is loaded
1. {{baseUrl}} to current base url, {{baseSecureUrl}} to current
base secure url is substituted
2. Simplexml_load_string is called with the element class
\Magento\Framework\View\Layout\Element.
3. A new xml tag (handle or layout) is added into SlayoutStr.
The tag's id attribute is also a filename without “.xml" suffix.
It contains attributes and the contents of the xml object’s
core element, loaded in the previous step.
iv. A new xml object, consisting of SlayoutStr, is created.
b. From this xml only necessary handles are loaded.
c. Additional handles from the database are loaded.
6. Layout for the current handles is returned.
7. Layout xml object is generated.
8. Layout structure of elements from the loaded XML configuration is generated.

In order to view the merged layout for the current page, temporarily add execute method
into controller action before the return element the following code (at the condition that
result page is contained in the SresultPage variable):

header('Content-Type: text/xml');

$layoutString = $resultPage->getlLayout()->getXmlString();
echo '<layouts
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">"
$layoutString . '</layouts>';

die;

This will put out the xml contents of the merged layout directly into the browser.

This can also be achieved using observer.
File <module_dir>/etc/frontend/events.xml:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Event/etc/events
.xsd">

<event name="layout_generate_blocks_after">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<observer name="vendor_module layout generate_blocks"
instance="Vendor\Module\Observer\LayoutGenerateBlockObserver" />
</event>
</config>

File <module_dir>/Observer/LayoutGenerateBlockObserver.php:

<?php
namespace Vendor\Module\Observer;

use Magento\Framework\Event\Observer;
use Magento\Framework\Event\ObserverInterface;

class LayoutGenerateBlockObserver implements ObserverInterface

{

public function execute(Observer $observer)

{
header('Content-Type: text/xml');

$layoutString =
$observer->getEvent()->getLayout()->getXmlString();

echo '<layouts
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">"
$layoutString . '</layouts>';

die;

Determine how HTML output is rendered.

For layout rendering, \Magento\Framework\View\Layout::getOutput() is called. This
method recursively renders child elements.

How does Magento flush output, and what
mechanisms exist to access and customize output?

Magento flushes html output the following way:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

—_—

. Controller action returns certain Sresult
2. Ifresultis instance of \Magento\Framework\App\Response\Httpinterface, then
the result is returned to the browser
3. Incaseresult is instance of \Magento\Framework\Controller\ResultInterface,
then:
a. Sresult->renderResult(Sresponse) is called, which calls
Sresult->applyHttpHeaders(Sresponse) and Sresult->render(Sresponse)
4. Then, Sresponse->sendResponse() method is called. The method sends headers
and body to the browser.

There can be different types of Sresult; for instance:
1. \Magento\Framework\Controller\Result\Raw
2. \Magento\Framework\Controller\Result\Json
3. \Magento\Framework\Controller\Result\Redirect
4. \Magento\Framework\View\Result\Layout
5. \Magento\Framework\View\Result\Page

Each type realizes the logic of headers and body generation for sending to the browser.

Let us consider \Magento\Framework\View\Result\Page.
Render method:

protected function render(HttpResponseInterface $response)
{
$this->pageConfig->publicBuild();
if ($this->getPagelLayout()) {
$config = $this->getConfig();
$this->addDefaultBodyClasses();
$addBlock = $this->getLayout()->getBlock(' 'head.additional");
// todo
$requirels = $this->getLayout()->getBlock('require.js");
$this->assign([
'requirels’ => $requirels ? $requirels->toHtml() : null,
"headContent' =>
$this->pageConfigRenderer->renderHeadContent(),
"headAdditional’ => $addBlock ? $addBlock->toHtml() :
null,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

"htmlAttributes' =>
$this->pageConfigRenderer->renderElementAttributes($config: :ELEMENT_T
YPE_HTML),

"headAttributes' =>
$this->pageConfigRenderer->renderkElementAttributes($config: :ELEMENT_T
YPE_HEAD),

'bodyAttributes' =>
$this->pageConfigRenderer->renderkElementAttributes($config: :ELEMENT_ T
YPE_BODY),

'loaderIcon' =>
$this->getViewFileUrl('images/loader-2.gif"),

s

$output = $this->getLayout()->getOutput();
$this->assign('layoutContent', $output);
$output = $this->renderPage();
$this->translateInline->processResponseBody($output);
$response->appendBody ($output);

} else {
parent: :render($response);

}

return $this;

renderPage method loads the Magento_Theme::root.phtml template that we will explore
in the next paragraph.

At the end, the Soutput we get is added into Sresponse body.

To customize the output, you can:

1. Modify layout xml files.
Override phtml templates.
Add layout handle to \Magento\Framework\View\Result\Page.
Override toHtml or _toHtml method of the block (_toHtml is recommended).
Create a custom result class that extends
\Magento\Framework\View\Result\Page and apply it in controller actions.

a s DN

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

6. Call Sresult->renderResult(Sresponse) in execute method of controller action
class, customize Sresponse body and execute return Sresponse.

Determine module layout XML schema. How do you
add new elements to the pages introduced by a
given module?

Layout instructions:

e <block> - for adding a new block

e <container> - for adding a new container

e before and after attributes - for specifying the position of a block or container.
You may use <block>, <container>, <move> in the blocks.

e <action> - [deprecated] calls block method during the block generation.
<referenceBlock> and <referenceContainer> - for modifying or deleting the
current block and the container correspondingly.

e <move> - for altering the parent or the position of a block or a container.
<remove> - is used only to remove the static resources linked in a page <head>
section.

e <update>-is used to include a certain layout file.

e <argument> - sets arguments for blocks.

block vs. container
e Blocks represents the end of the chain in rendering HTML for Magento.
e Containers contain blocks and can wrap them in an HTML tag.
e Containers do not render any output if there are no children assigned to them.

Demonstrate the ability to use layout fallback for
customizations and debugging.

Layout fallback allows to search layout files in all enabled modules and current themes
(current themes = current theme + all parent themes of it). In order to perform
customization, create a layout file with handle.xml name (handle is layout handle name)
in one of the folders where Magento searches for layout files.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_block
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_block
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_cont
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_xml-instrux_before-after
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_xml-instrux_before-after
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_act
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_act
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_ref
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_mv
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_rmv
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_rmv
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_upd
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#fedg_layout_xml-instruc_ex_upd
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/layouts/xml-instructions.html#argument
http://www.belvg.com/
mailto:contact@belvg.com

For debugging, put out the merged layout for the current page by following the
instructions described above.

How do you identify which exact layout.xml file is
processed in a given scope?

In order to determine which layouts are used for the current page, add the following
code into the controller action into the execute method before return (under the
condition that result page is contained in the SresultPage variable):

var_dump($resultPage->getLayout()->getUpdate()->getHandles());
die;

Add “.xml" to the received lines of code and this will be the layout files' names

How does Magento treat layout XML files with the
same names in different modules?

Magento merges the layout xml files into a single one. However, this merge is different
from config xml files. In config xml files, xml are merged according to tag names and
SidAttributes, while in layout the tags do not merge. Merged layout stores the file
contents of all layout modules, the current theme and its parent themes; therefore,
merged layout will contain many <body> tags.

Identify the differences between admin and
frontend scopes. What differences exist for layout
initialization for the admin scope?

1. layout area is changed for adminhtml

2. Layout of aclResource tag support is added, allowing to connect the resource to
a block and hide the block is user does not have access to the resource.

3. Default block class is changed for Magento\Backend\Block\Template

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 3: Customizing the Magento Ul

3.1 Demonstrate ability to utilize themes
and the template structure

Demonstrate the ability to customize the Magento
Ul using themes. When would you create a new
theme?

In case there is a need to modify the web store layout, you can create a new theme to
achieve this. To learn how to create a Magento theme, follow the link
https://belvg.com/blog/magento-2-creating-a-new-theme.html

How do you define theme hierarchy for your
project?

To define theme hierarchy for your project, specify the parent theme in theme.xml file
inside the theme:

<theme xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Config/etc/theme
.xsd">

<parent>Magento/blank</parent>

</theme>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://belvg.com/blog/magento-2-creating-a-new-theme.html
http://www.belvg.com/
mailto:contact@belvg.com

Demonstrate the ability to customize/debug
templates using the template fallback process.

In order to customize a certain view file, override it in the current theme. Template
fallback process is when Magento 2 searches for a file in the child theme, then in the
parent themes and finally in modules. To learn more about this, follow the link:
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/themes/theme-inherit.h
tml

There are the following methods of template debugging:

e XDebug (The main peculiarity of this method are breakpoints as well as the
ability to view and modify variables at any time)
Developer mode (the mode for development, displays errors directly on screen)
Logs in folder var/logs and reports in folder var/reports
Display Magento reports in browser

e Template path hints (displays templates’ paths and names)
To learn more about debugging methods, follow the link
(https://belvg.com/blog/developer-mode-and-debugging-in-magento-2.html)

How do you identify which exact theme file is used
in different situations?

To easier identify what template file is used in a certain place at the website, enable
path hints for it.

First, log in to the admin panel and navigate to "Stores -> Configuration”.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/themes/theme-inherit.html
https://devdocs.magento.com/guides/v2.3/frontend-dev-guide/themes/theme-inherit.html
https://belvg.com/blog/developer-mode-and-debugging-in-magento-2.html
http://www.belvg.com/
mailto:contact@belvg.com

Stores

| Configuration

(http://prntscr.com/k6d4s6)

Then, go to "Advanced -> Developer". Expand the “Debug” tab and set "Enabled
Template Path Hints for Storefront” attributes at Yes.

Configuration

GENERAL v))
Developer Client Restrictions

CATALOG v
Debug
CUSTOMERS v

Enabled Template Path Hints for Storefront Yes
SALES v |

Enabled Template Path Hints for Admin No
SERVICES v 4

ADVANCED N Add Block Names to Hints |\

Admin Template Settings
System Translate Inline

JavaScript Settings

CSS Settings

Image Processing Settings

Static Files Settings

(https://prnt.sc/k6d5cq)

In case you have multiple stores, set in the upper right menu the one for which you
enable path hints.

When there is a need to enable hints for a certain ip-address, expand the "Developer
Client Restrictions" tab and enter the IP-address into the "Allowed IPs (comma
separated)” field. If you need to enter several IP-addresses, separate them with
commas.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://prntscr.com/k6d4s6
https://prnt.sc/k6d5cg
http://www.belvg.com/
mailto:contact@belvg.com

o

MAGEPLAZA EXTENSIONS ¥ Frontend Development Workflow ¢}
PORTO3.06 v
Workflow type) Use system value
PORTO EXTENSIONS v Not avaiabie n production mode
GENERAL v
Developer Client Restrictions
CATALOG v
Allowed IPs (comma separated)
cusToMERS v Tosve emptyTorscces Trom oy oot
saLes v
Debug e
SeRVICES v
Enabled Template Path Hints for Storefront Yes
ADVANCED ~
Enabled Template Path Hints for Admin No
Admin
Add Block Names to Hints No
System
Advanced Template Settings °
Developer Translate Inline ©

Javascript Settings ©

(http://prntscr.com/k6d821)

Another way to enable or disable path hints is via CLI:

e bin/magento dev:template-hints:enable
e bin/magento dev:template-hints:disable

As you have completed the course of actions described above, path hints will appear at

the front end of the store.
\ 4

Details More Information Reviews

SIS publishing packages and web page editors now use Lorem Ipsum as their

Itis a long established fact that a reader will be distracted by the readable default model text, and a search for ‘lorem ipsum’ will uncover many web sites

content of a page when looking at its layout. The point of using Lorem Ipsum is tillin their infancy. Various versions have evolved over the years, sometimes by
that it has a more-or-less normal distribution of letters, as opposed o using accident, sometimes on purpose (injected humour and the like).

“Content here, content here, making it look like readable English. Many desktop

(http://prntscr.com/k6d8su)

Following the highlighted paths, we can easily find the needed templates files.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://prntscr.com/k6d821
http://prntscr.com/k6d8su
http://www.belvg.com/
mailto:contact@belvg.com

If you know the needed file's unique line (for example, class name, attributes, etc.), then
you can search for it among the project files. In PhpStorm, find the project files folder,
click the right mouse button, select “Find in Path...” and insert the unique line in the
appeared window.

Another way to search for files is using grep command: grep -R "<div
class=\"product-item-inner\">" vendor

How can you override native files?

In order to override the parent theme files, put the file in the current theme folder at the
same path it was located in the parent theme.

Example:

If you need to override a file in the parent theme
<parent_theme_dir>/Magento_Catalog/templates/product/view/gallery.phtm
1, then create a file in the child theme
<child_theme_dir>/Magento_Catalog/templates/product/view/gallery.phtml

In order to override module’s view files, create them at the same path as they were
located in the module’s view folder, but deleting <area> from the path and adding the
module name. Example:

If we want to override the module file
vendor/magento/module-catalog/view/frontend/templates/product/view/gallery.phtml,
create a file in the theme
<child_theme_dir>/Magento_Catalog/templates/product/view/gallery.phtml

This method overrides templates files and all the files in web folder. However, if you try
to override the layout file the following way, instead of overriding the parent theme file
will be added up to. To learn more about the layout files override in Magento 2, follow
the link

(https://belvg.com/blog/override-a-layout-in-magento-2.html)

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://belvg.com/blog/override-a-layout-in-magento-2.html
http://www.belvg.com/
mailto:contact@belvg.com

3.2 Determine how to use blocks

Demonstrate an understanding of block
architecture and its use in development.

Blocks are PHP classes that provide data for template files (.phtml) and implement
rendering. Also, blocks can cache the results of template rendering.

Which objects are accessible from the block?

All blocks extend \Magento\Framework\View\Element\Template, so by default blocks
are injected with a \Magento\Framework\View\ Element\Template\Context object and
support getters and setters for returning and storage of any objects or data. This object
contains a number of other objects that are loaded into the instance:

e Sthis->validator: \Magento\Framework\View\Element\Template\File\Validator
Sthis->resolver: \Magento\Framework\View\Element\Template\File\Resolver
Sthis->_filesystem: \Magento\Framework\Filesystem
Sthis->templateEnginePool: \Magento\Framework\View\TemplateEnginePool
Sthis->_storeManager: \Magento\Store\Model\StoreManagerinterface
Sthis->_appState: \Magento\Framework\App\State
Sthis->pageConfig: \Magento\Framework\View\Page\Config

What is the typical block’s role?

Separation of blocks and templatesallows you to divide design related logic and design.
Blocks are usually, but not always, connected to PHTML template files. Blocks can be
thought of as data containers for a template, which represents a piece of the HTML on
the page. In layouts XML, you can manage blocks on page and add new ones, set
templates to move and delete.

Identify the stages in lifecycle of a block

The block life cycle consists of two phases: generating blocks and rendering blocks.
Blocks are instantiated at the moment the layout is created. They are not executed at

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

that time, just instantiated. Also during this phase, the structure is built, the children of
blocks are set, and for each block, the prepareLayout() method is called.
However, rendering occurs in the later rendering phase.
Generating phase:
Magento\Framework\View\Page\Config::publicBuild()
Magento\Framework\View\Page\Config::build()
Magento\Framework\View\Layout\Builder::build()
Magento\Framework\View\Layout\Builder::generateLayoutBlocks()
Magento\Framework\View\Layout::generateElements()

6. Magento\Framework\View\Layout\GeneratorPool::process()
GeneratePool goes through all generators and generates all scheduled elements. It has
generators with the following elements:
Magento\Framework\View\Page\Config\Generator\Head
Magento\Framework\View\Page\Config\Generator\Body
Magento\Framework\View\Layout\Generator\Block
Magento\Framework\View\Layout\Generator\Container
Magento\Framework\View\Layout\Generator\UiComponent
Rendering phase:

1. Magento\Framework\View\Result/Page::render()

2. Magento\Framework\View\Layout::getOutput()
At this moment, we already have all the layout xml for the generated page, and all block
classes are created.

3. Magento\Framework\View\Layout::renderElement()

4. Magento\Framework\View\Layout::renderNonCachedElement()
In this method, we check the type of rendered elements. It creates them and returns
html using toHtmI() method. This method is not recommended to override. If you want
to change block rendering, override _toHtmI() method.

a s =

In what cases would you put your code in the
_prepareLayout(), _beforeToHtml(), and _toHtml()
methods?

_prepareLayout() - most often used for:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

- adding child's
Magento\Eav\Block\Adminhtml\Attribute\Edit\Options\AbstractOption
s::_preparelLayout()

- adding tabs on backend
Magento\Backend\Block\System\Design\Edit\Tabs:: preparelLayout()

- set title Magento\Wishlist\Block\Customer\Sharing:: prepareLayout()

- adding pager, breadcrumbs and so on
Magento\Sales\Block\Order\History:: prepareLayout()

- setrenderer Magento\Catalog\Block\Adminhtml\Form:: prepareLayout()

_beforeToHtml()

- data preparing
Magento\Catalog\Block\Product\ProductList\Related:: beforeToHtml(
)

- assign values
Magento\Backend\Block\Widget\Form\Element:: beforeToHtml()

- adding child's
Magento\Shipping\Block\Adminhtml\Create\Items:: beforeToHtml()

_toHtml()

Using this method, you can manipulate block rendering, complement the condition,
make wrappers for html, change the template for the block, etc.
Magento\GroupedProduct\Block\Order\Email\Items\Order\Grouped:: toHtml(
) , Magento\Sales\Block\Reorder\Sidebar:: toHtml()

How would you use events fired in the abstract
block?

view_block_abstract_to_html_before - use for editing params:
- templates
- caches
- grids

view _block_abstract to_html_after - use for html manipulation - editing, adding n
conditions, wrappers

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe how blocks are rendered and cached

The most important method for rendering a block is
Magento\Framework\View\Element\AbstractBlock::toHtml(). First, it runs _loadCache(),
and if the cache is missing, then it run _beforeToHtml() after the block is rendered by
the method_toHtml(). Afterward, the cache is saved _saveCache(Shtml) and run
_afterToHtmI(Shtml).

Method _loadCache() uses cache_key return by getCacheKey() and _saveCache(Shtml)
- cache_tags obtained by the method getCacheTags(). Cache_key each block is added
up like BLOCK_CLASS::CACHE_KEY_PREFIX. Scache_key , if this property not defined -
BLOCK_CLASS::CACHE_KEY_PREFIX . sha1(implode('|, Sthis->getCacheKeyInfo())).
Cache_tags is an array and consists of a property Scache_tags, if it defined in block and
if block instance of Magento\Framework\DataObject\ldentitylnterface values returned
by the method getldentities() are added to the array. We can manage Scache_lifetime
variable. Value will be in seconds, if you want to disable cache, you can set value to 0 or
not set the value at all, because all blocks are non-cacheable by default.

Identify the uses of different types of blocks.

- Magento\Framework\View\Element\AbstractBlock - parent block for all
custom blocks

- Magento\Framework\View\Element\Template - block with template

- Magento\Framework\View\Element\Text - just rendering text

- Magento\Framework\View\Element\FormKey - return hidden input with form
key

- Magento\Framework\View\Element\Messages - rendering notification
message by type

When would you use non-template block types?

Applying non-template block types is wise when we use simple renderers. Another
reason for using such block types is when block content is dynamic generated or stored
in database or in containers. For example, if you want form_key in template, you can
insert block Magento\Framework\View\Element\FormKey.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

In what situation should you use a template block or
other block types?

Using a template block or other block types is recommended when complicated
renderers are used, or when you want to customize themes or add new blocks. A prime
example is a breadcrumbs block Magento\Catalog\Block\Breadcrumbs. If you want to
customize breadcrumbs, you can set template in layout.

3.3 Demonstrate ability to use layout and
XML schema

Describe the elements of the Magento layout XML
schema, including the major XML directives. How
do you use layout XML directives in your
customizations?

Magento layouts contain instructions that allow to:
e Add and delete static resources (JavaScript, CSS, fonts) into the head section of
the page;
Create and modify containers;
Create and modify blocks;
Set the templates for blocks;
Pass arguments into blocks;
Change the location of the elements (blocks and containers);
Change elements’ order (blocks and containers);
Delete elements (blocks and containers).

Let us examine the cases of each instruction application:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Adding and deleting static resources

To add static resources to the page, first create default_head_blocks.xml file at the
following path: <theme_dir>/Magento_Theme/layout/default_head blocks.xml.

Add a CSS file with the following instruction:

<css src="css/my-styles.css"/>

To add a locally located JavaScript file, use one of the following instructions:

<script src="Magento_Catalog::js/samplel.js"/>
<link src="js/sample.js"/>

In order to connect an external resource, add src_type attribute with “url” value. For
example:

<Css
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap-th
eme.min.css" src_type="url" />

<script
src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/js/bootstrap.min
.js" src_type="url" />

To add a font, apply link tag and add attributes rel="stylesheet" and type="text/css":

<link rel="stylesheet" type="text/css"
src="http://fonts.googleapis.com/css?family=Montserrat”
src_type="url" />

Adding or modifying containers
To add a new container, use the following instruction:

<container name="you.container" as="youContainer" label="My

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Container" htmlTag="div" htmlClass="my-container" />

To modify a container (to add a block, for example), apply referenceContainer
instruction:

<referenceContainer name="header.panel">

<block class="YouVendor\YouModule\Block\YouBlock"
name="new.block" />
</referenceContainer>

Adding or modifying blocks. Modifying block template and
parameters

To create a block, apply block instruction. For example:

<block class="Magento\Catalog\Block\Product\View\Description"
name="product.info.sku" template="product/view/attribute.phtml”
after="product.info.type" />

To modify a block, apply referenceBlock instruction. Let us use the following block as
an example:

<block class="Namespace_Module Block Type" name="block.example">
<arguments>
<argument name="label" xsi:type="string">Block
Label</argument>
</arguments>
</block>

To modify its argument and add a new one, apply the following instruction:

<referenceBlock name="block.example">
<arguments>
<l-- Modified argument -->

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="label" xsi:type="string">New Block
Label</argument>
<!-- New argument -->
<argument name="custom_label" xsi:type="string">Custom Block
Label</argument>
</arguments>
</referenceBlock>

In case you need to set a template for a block, there are two ways to do this.
Method 1: using template attribute:

<referenceBlock name="new.template"
template="Your_Module: :new_template.phtml”/>

Method 2: using an argument with a name template:

<referenceBlock name="new.template">
<arguments>
<argument name="template"
xsi:type="string">Your_Module: :new_template.phtml</argument>
</arguments>
</referenceBlock>

In our examples, new_template.phtml is the path to the template file, relatively to
template folder (<module_dir>/view/<area>/templates or
<theme_dir>/<Vendor_Module>/templates).

It should be noted that the templates, set with template attribute, have a higher priority.

Therefore, the value in the template attribute will rewrite the one, specified with the help
of argument.

Changing of the order or the location of blocks and
containers. Deleting blocks and containers

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Before and after attributes allow to change the element order inside the parent. Set the
name of the element, before or after which we want to place the needed element, as the
attributes’ values. Using move instruction, we can not only change the element'’s order,
but also modify the parent’s order. For example, the following construction will relocate
the block named product.info.review into the container with the name
product.info.main, and will place it before the container named product.info.price:

<move element="product.info.review" destination="product.info.main"
before="product.info.price"/>

To delete a block or container, use the remove attribute of the referenceBlock or
referenceContainer instructions correspondingly. For instance, to delete a
catalog.compare.sidebar block, apply the following instruction:

<referenceBlock name="catalog.compare.sidebar" remove="true" />

Describe how to create a new layout XML file.

To create a layout file, you first need to create an XML file with the name layout handle
at one of the following paths:

<module_dir>/view/<area>/layout/<layout-handle>.xml or
<theme_dir>/<Vendor>_<Module>/layout/<layout-handle>.xml with the contents:

<?xml version="1.0"?>

<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">

</paéé;
Describe how to pass variables from layout to
block.

To pass the variables’ values from layout to block, apply <arguments> instruction inside
the block. For instance, if we want to pass cache_lifetime:

<referenceBlock name="my_block_name">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<arguments>
<argument name="cache_lifetime"
xsi:type="string">3600</argument>
</arguments>
</referenceBlock>

How to modify existing layout files

Magento 2 has a number of instructions, allowing to modify layout in nearly any way.
But first, we need to find out how to modify a layout for a particular page. This can be
done in configuration XML file of the page, using layout attribute of the page root node.
For instance, to modify page Advanced Search layout from the default 1-column to
2-column with left bar, place at the following path
<theme_dir>/Magento_CatalogSearch/layout/catalogsearch_advanced_index.xml a file

with the such contents:

<page layout="2columns-left"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">

</page>

3.4 Utilize JavaScript in Magento

Describe different types and uses of JavaScript
modules. Which JavaScript modules are suited for
which tasks?

Javascript module is a separate *.js file that can import other require.js modules. It has

the similar contents:
// File (<module_dir>/view/frontend/web/js/script.js)

define(['jquery'], function ($)

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

return function(...){

}s
1)

// Other module can look the following way to use the first module:
define([

‘jquery’,

'Vendor_Module/js/script’
], function ($, myModule)

return function(...){

myModule(...);

};
s

Plain modules

Plain module is a common module that is not inherited from others. You will find an
example of a plain module above (Vendor_Module/js/script). In the examples below we
will use modules that are inherited with jQuery.widget, uiElement.extend functions. This
type of modules should be used when instances of the module are not connected to any
element.

jQuery Ul widgets

jQuery Ul widget allows to create a custom jQuery Ul widget with a custom handler. This
type of module should be used when instances of the module are connected to certain
elements that are not Ul components.

Let us examine this case using the following file:
vendor/magento/module-multishipping/view/frontend/web/js/payment.js:

define([
"jquery”’,
'mage/template’,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

'Magento_Ui/js/modal/alert’,
'jquery/ui’,
'mage/translate’

], function ($, mageTemplate, alert) {
'use strict';

$.widget('mage.payment', {
options: {

}s

_create: function () {

}s
1

return $.mage.payment;

})s

UiComponents

UiComponents allow to create a custom widget with a custom handler, inherited from
uiElement. This type of module is recommended to use when instances of the module
are connected to Ul components.

Let us examine this case using the following file:
vendor/magento/module-catalog/view/frontend/web/js/storage-manager.js:

define([
‘underscore’,
'uiElement’,
'mageUtils’,
'Magento_Catalog/js/product/storage/storage-service’',
'‘Magento_Customer/js/section-config’,
‘jquery’

], function (_, Element, utils, storage, sectionConfig, $) {

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

'use strict';

return Element.extend({
defaults: {

}s

initialize: function () {

return this;

1
1
1)

Describe Ul components. In which situation would

you use UiComponent versus a regular JavaScript
module?

Ul components are realized using XML configuration + PHP modifiers and data
providers + HTML knockout templates + JS module, based on uiElement +
CSS/LESS/SASS styles. They allow to simplify development and significantly decrease
code duplication.

Out-of-the-box Ul components are heavily used in adminhtml, while at the frontend - only
in checkout (the Ul components are added into checkout via layout). If JS module is a
component inside checkout or in form or grid in adminhtml, then apply Ul components.
Otherwise, use regular JS module.

Describe the use of requirejs-config.js,
Xx-magento-init, and data-mage-init.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Requirejs-config.js files (located at the <module_dir>/view/<area>/requirejs-config.js
and <theme_dir>/requirejs-config.js paths) contain the configuration for RequireJS. To
pass the configuration to browser, Magento unites all requirejs-config.js files into one.
To learn more about the configuration options for RequireJsS, follow the link:
https://requirejs.org/docs/api.html#config.

To insert a JS component into a PHTML template, use one of the following variants:

e using the data-mage-init attribute
e using the <script type="text/x-magento-init" /> tag

If you need to initialize JS module without the connection to HTML Element, use
<script type="text/x-magento-init"> and enter "*" symbol into the selector field.

<script type="text/x-magento-init">

{
Il*ll: {
"Vendor_Module/js/myfile": {"parameter":"value"}
}
}
</script>

In case you need to initialize JS module with connection to HTML Element, there are
two ways to do this:

1) Use data-mage-init attribute of the element, to which the component should be
connected. For example:

<div id="element-id"
data-mage-init="'{"Vendor_Module/js/myfile":{"parameter":"value"}}'></
div>

2) Use <script type="text/x-magento-init">, specifying selector for elements. For each
element, a new instance of javascript module will be created. For example:

<script type="text/x-magento-init">

{

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://requirejs.org/docs/api.html#config
http://www.belvg.com/
mailto:contact@belvg.com

"#element-id": {
"Vendor_Module/js/myfile": {}

}

</script>

Initialization in PHTML template is commonly used to pass parameters from php to
javascript module. But we can also initialize javascript module in another javascript file.

Example:
vendor/magento/module-swatches/view/adminhtml/web/js/visual.js

$('[data-role=swatch-visual-options-container]').sortable({

distance: 8,
tolerance: ‘'pointer’,
cancel: 'input, button',

axis: 'y',

3

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 4: Working with Databases in Magento

4.1 Demonstrate ability to use data-related
classes

Describe repositories and data API classes. How do
you obtain an object or set of objects from the
database using a repository?

Repository can be applied for working with collections in Magento 2. It realizes the
Repository pattern that allows to work with collections and entities regardless of their
storage place (storing or caching are the implementation details). The pattern itself is
located between Domain and Application Service Layer.
In Magento 2, five basic repository functions are realized. They are save, getByld,
getList, delete, deleteByld. Yet, each Repository realization in Magento has a custom
interface and the functions are not always implemented in it. For example, in
Magento\Quote\Api\GuestCartTotalRepositoryInterface, only get(Scartld) method is
realized. Therefore, it is recommended to pay attention to a certain Repository class
implementation. Let us examine the Repository case using the
\Magento\Catalog\Api\ProductRepositorylnterface example and its realization
\Magento\Catalog\Model\ProductRepository.
<?php
namespace Magento\Catalog\Api;
interface ProductRepositoryInterface
{ public function save(\Magento\Catalog\Api\Data\ProductInterface $product,
$saveOptions = false);
public function get($sku, $editMode = false, $storeld = null, $forceReload =
false);
public function getById($productId, $editMode = false, $storeld = null,
$forceReload = false);
public function delete(\Magento\Catalog\Api\Data\ProductInterface $product);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function deleteById($sku);
public function getList(\Magento\Framework\Api\SearchCriterialnterface
$searchCriteria);

}

Here, all necessary five functions for working with Repository are realized. In this case,
the main class for working with product is
\Magento\Catalog\Api\Data\ProductInterface, allowing to save all the products
inherited from this class, regardless of their type.

Let us consider the example of getByld method realization:

<?php
protected $productRepository;
public function _ construct(

\Magento\Catalog\Api\ProductRepositoryInterface
$productRepository)
{
$this->productRepository = $productRepository;

}

public function someMethod() {
$product = $this->productRepository->getById(1);
return $product->getSku();

public function someDeleteMethod() {
$this->productRepository->deleteById(1);

In this case, we realize working with ProductRepository by extracting the object from id
1 and returning it to SKU. deleteByld method will be realized similarly. In this
constructor, we create \Magento\Catalog\Api\ProductRepositorylnterface, not

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Catalog\Model\ProductRepository itself. The dependencies are described in
di.xml file. For example, the dependency for the current class is described in
vendor/magento/module-catalog/etc/di.xml and looks the following way:

Let us also consider save method realization:

public function someMethod() {
$product = $this->productRepository->getById(1);
$product->setSku(' test-sku-1");
$this->productRepository->save($product);

public function someDeleteMethod() {
$product = $this->productRepository->getById(1);
$this->productRepository->delete($product);

We modifies SKU of the project and saved it using save repository method. Delete
method deletes the product.

How do you configure and create a SearchCriteria
instance using the builder?

In this context, getList method is realized with SearchCriterialnterface. The interface
realizes conditions for requests (for example, it is where in MySQL query). All conditions
fall into two categories: Filter and FilterGroup.

(sku LIKE "test-%" OR sku LIKE "%-product")JJ ANDj(price "184"]

Eilter FilterGroup

We implement the conditions mentioned above using SearchCriteria:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function someMethod() {
$filter =

$this->objectManager->create('Magento\Framework\Api\Filter');
$filter->setField('sku');
$filter->setValue('test-%");
$filter->setConditionType('like");
$filter2 =
$this->objectManager->create('Magento\Framework\Api\Filter');
$filter2->setField('sku');
$filter2->setValue('%-product");
$filter2->setConditionType('like");
$filterGroup =
$this->objectManager->create('Magento\Framework\Api\Search\FilterGrou
P);
$filterGroup>setFilters([$filter, $filter2]);
$filter3 =
$this->objectManager->create('Magento\Framework\Api\Filter"');
$filter3->setField('price');
$filter3->setValue('100");
$filter3->setConditionType('eq');
$filterGroup2 =
$this->objectManager->create('Magento\Framework\Api\Search\FilterGrou
P');
$filterGroup2>setFilters([$filter3]);
$searchCriteria- =
$this->objectManager->create('Magento\Framework\Api\SearchCriterialInt
erface');
$searchCriteria->setFilterGroups([$filterGroup, $filterGroup2]);
$result = $this->productRepository>getList($searchCriteria-);
return $result->getItems();

}
This code returns the objects array, inherited from
\Magento\Catalog\Api\Data\ProductInterface.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

How do you use Data/Api classes?

Api in Magento 2 is commonly used to describe interfaces, further used in Model,
Helper, Data and other Magento classes. Also, APl interfaces can be applied for WebAPI
requests (when they are described in webapi.xml). Api directory is located in modules
roots, similarly to etc, Model and other directories.

Unlike Api, Api/Data directory contains interfaces for the data, for example, store data or
customer data.

An excellent example for explaining the difference between Api and Api/Data is the
implementation of \Magento\Catalog\Api\ProductRepositoryInterface and
\Magento\Catalog\Api\Data\ProductInterface.

ProductRepository implements a get method that loads a Product object (using
ProductFactory) that implements Productinterface for working with data.

Describe how to create and register new entities.

In Magento 2, entities are unique objects that contain a number of various attributes
and/or parameters. Products, orders, users, etc. are all examples of entities.

To create a new entity type, use \Magento\Eav\Setup\EavSetup class. Entity creation
and registration is realized via installEntities(Sentities = null) method, specifying the
entity settings as a parameter. For example:

$eavSetup>installEntities([
\Belvg\Test\Model\Test::ENTITY => [
'entity model' =>
Belvg\Test\Model\ResourceModel\Test"',
"table' => \Belvg\Test\Model\Test::ENTITY .
' entity',
‘attributes' => [
"test_id' => [
"type' => 'static’,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

1,

"first_attribute' => [
"type' => 'static',

1,

'second_attribute' => [
"type' => 'static',

].’

1,

1);

How do you add a new table to the database?

To add a new table, create a Setup script that realizes
Magento\Framework\Setup\InstallSchemalnterface or
Magento\Framework\Setup\UpgradeSchemalnterface interface, or realize install or
upgrade method in it correspondingly. For example:

public function install(SchemaSetupInterface $setup,
ModuleContextInterface $context)
{
$setup->startSetup();
$table = $setup->getConnection()->newTable(
$setup->getTable('belvg test')
)->addColumn(
‘entity id',
\Magento\Framework\DB\Dd1\Table: :TYPE_INTEGER,
null,
["identity' => true, 'unsigned' => true, 'nullable' =>
false, 'primary' => true],
"EntityID’
)->addColumn(
"first_attribute’',
\Magento\Framework\DB\Dd1\Table: : TYPE_TEXT,
64,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

[1,

'"FirstAttribute’
)
$setup->getConnection()->createTable($table);
$setup->endSetup();

This part of the code creates a belvg_test table with entity_id and first_attribute fields.

Describe the entity load and save process.

To load and store entity in Magento\Eav\Model\Entity\AbstractEntity model, load and
save methods are realized; they carry the logic of saving and loading from the database.

public function load($object, $entityId, $attributes = [])
{
\Magento\Framework\Profiler: :start('EAV:load entity');
/**
* Load object base row data
*/
$object->beforeLoad($entityId);
$select = $this->_getlLoadRowSelect($object, $entityId);
$row = $this->getConnection()->fetchRow($select);

if (is_array($row)) {
$object->addData($row);
$this->loadAttributesForObject($attributes, $object);

$this-> loadModelAttributes($object);
$this->_afterLoad($object);
$object->afterLoad();
$object->setOrigData();
$object->setHasDataChanges(false);

} else {
$object->isObjectNew(true);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

}
\Magento\Framework\Profiler: :stop('EAV:load_entity');

return $this;

public function save(\Magento\Framework\Model\AbstractModel $object)

/**
* Direct deleted items to delete method
*/
if ($object->isDeleted()) {
return $this->delete($object);
}
if (!$object->hasDataChanges()) {
return $this;

}

$this->beginTransaction();
try {
$object->validateBeforeSave();
$object->beforeSave();
if ($object->isSaveAllowed()) {
if (!$this->isPartialSave()) {
$this->loadAllAttributes($object);

if ($this->getEntityTable() ==
\Magento\Eav\Model\Entity: :DEFAULT_ENTITY_TABLE
&& !$object->getEntityTypeld()

) {
$object->setEntityTypeld($this->getTypeId());

$object->setParentId((int)$object->getParentId());

$this->objectRelationProcessor->validateDataIntegrity($this->getEntit

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

yTable(), $object->getData());

$this->_beforeSave($object);
$this->processSave($object);
$this->_ afterSave($object);

$object->afterSave();

}
$this->addCommitCallback([$object,

"afterCommitCallback'])->commit();
$object->setHasDataChanges(false);

} catch (DuplicateException $e) {
$this->rollBack();
$object->setHasDataChanges(true);
throw new AlreadyExistsException(__('Unique constraint

violation found'), $e);

} catch (\Exception $e) {
$this->rollBack();
$object->setHasDataChanges(true);
throw $e;

}

return $this;

Describe how to extend existing entities. What
mechanisms are available to extend existing
classes, for example by adding a new attribute, a
new field in the database, or a new related entity?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

To extend the existing classes, you can create additional EAV attributes and new fields,
as well as create the connected classes that realize their interface.

To create additional fields in the database, apply Setup scripts. Let us examine how to
create a field in the database using InstallSchema class as an example:

public function install(SchemaSetupInterface $setup,
ModuleContextInterface $context)
{
$installer = $setup;
$installer->startSetup();
$table = $installer->getTable('custom table');
$columns = [
‘custom_field' => [
"type' => \Magento\Framework\DB\Dd1l\Table::TYPE_TEXT,
'nullable' => false,
'comment' => 'custom field',

1,

1;

$connection = $installer->getConnection();

foreach ($columns as $name => $definition) {
$connection->addColumn($table, $name, $definition);

}
$installer->endSetup();

We extended the existing class with an additional ‘custom_field’ field in ‘custom_table’
table.

A new attribute can be created using \Magento\Eav\Setup\EavSetup class. Example:

public function _ construct(EavSetupFactory $eavSetupFactory)

{

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this->eavSetupFactory = $eavSetupFactory;

public function install(ModuleDataSetupInterface $setup,
ModuleContextInterface $context)
{
$eavSetup = $this->eavSetupFactory->create(['setup' =>
$setup]);
$eavSetup->addAttribute(
\Magento\Catalog\Model\Product: :ENTITY,
"custom_attribute’,
[
"type' => 'text',
'backend’ => "',
"frontend' => '',
"label’ => 'custom attribute’,
"input' => 'text',

'class' => h

'source' => "',

'global' =>
\Magento\Eav\Model\Entity\Attribute\ScopedAttributeInterface: :SCOPE_G
LOBAL,

'visible' => true,

'required' => true,

'user_defined' => false,

"default' => "',

'searchable' => false,

'filterable' => false,

'comparable' => false,

'visible_on_front' => false,

'used_in_product_listing' => true,

‘unique' => false,

‘apply to' => "'

);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Extension Attributes were introduced in Magento 2; they are responsible for adding the
additional data into the created object. Extension attribute should use
ExtensibleDatalnterface interface. Also, you are advised to realize
getExtensionAttributes and setExtensionAttributes methods in your code.

Code for extension attribute is generated during the compilation process, using
\Magento\Framework\Code\Generator that applies etc/extension_attributes.xml file
from the module directory. Example of extension_attributes.xml :

<extension_attributes for="Magento\Sales\Api\Data\OrderInterface">
<attribute code="custom_extension_attribute"
type="Belvg\Extension\Api\Data\CustomExtensionAttributeInterface" />
</extension_attributes>

Unlike the common Magento attributes, extension attribute is not automatically loaded
from and stored into the database, which means you need to realize the loading and
saving manually. For this purpose, plugins are the best choice; they are declared in
di.xml file. Example:

<type name="Magento\Sales\Api\OrderRepositoryInterface">
<plugin name="custom_extension_attribute"

type="Belvg\Extension\Plugin\OrderPlugin"/>

</type>

In the plugin, we can realize afterGet and afterSave methods that will contain the
loading and saving extension attribute logic.

Describe how to filter, sort, and specify the selected
values for collections and repositories. How do you
select a subset of records from the database?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Use addFieldToSelect and addAttributeToSelect methods to specify in the collection the
fields for selection.

For example:
$productCollection->addFieldToSelect("custom_field");

To apply filters to collections, use
addAttributeToFilter(Sfield, Scondition) and addFieldToFilter(Sfield, Scondition)
methods.

Conditions can be the following:

"eq" => equalvValue

"neq" => notEqualValue

"like" => likeValue

"nlike"™ => notLikeValue

is" => isValue

"in" => inValues

"nin" => notInValues
"notnull” => valueIsNotNull
"null" => valueIsNull

"moreq" => moreOrEqualValue
"gt" => greaterValue

"1t" => lessValue

"gteq" => greaterOrEqualValue
"lteq" => lessOrEqualValue
"finset" => valuelnSet

"from" => fromValue, "to" => toValue

Example:
$productCollection->addFieldToFilter('entity id', array('in' =>

[1,2,3])
setOrder method is used for sorting and processes both filter and
direction fields. For instance:

$productCollection>setOrder('position', "ASC");

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

searchCriteria is used for applying filters in repositories.

Describe the database abstraction layer for
Magento. What type of exceptions does the
database layer throw? What additional functionality
does Magento provide over Zend_Adapter?

Database abstraction layer realized in Magento 2 in the capacity of
\Magento\Framework\Model\ResourceModel\Db\AbstractDb class, realizing such core
methods, as save, delete, load.

Also, the following additional methods are realized atop Zend_Adapter:

addUniqueField, unserializeFields, serializeFields, hasDataChanged,
prepareDataForUpdate, isObjectNotNew, saveNewObject, afterSave,
beforeSave, isModified, afterLoad, beforeDelete, afterDelete, etc.

Database layer can have put our exceptions depending on its realization. For example,
PDO/Mysql can put out the following exceptions:
Zend_Db_Adapter_Exception
Zend_Db_Statement_Exception
Zend_Db_Exception

Zend_Db_Statement_Pdo

PDOException

LocalizedException
InvalidArgumentException

Exception

DuplicateException

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

4.2 Demonstrate ability to use install and
upgrade scripts

Describe the install/upgrade workflow. Where are
setup scripts located, and how are they executed?

Magento 2 applies schema/data migrations to provide data persistence and database
updatability. The migrations contain instructions for:
1. The necessary tables creation and their completion at the initial installation
2. Database scheme and its information conversion for each available application
version.

Magento 2 setup scripts are located in <module_dir>/Setup folder.

InstallSchema and InstallData classes are responsible for installing module the first
time, while UpgradeSchema and UpgradeData scripts are used when upgrading
module’s version.

Running setup scripts

Use CLI command to run migration scripts:
$ php bin/magento setup:upgrade

If Magento detects a new module, then it will instantiate objects from the
Vendor\Module\Setup\InstallSchema and Vendor\Module\Setup\InstallData classes.
In case the module version has changed, then Vendor\Module\Setup\UpgradeSchema
and Vendor\Module\Setup\UpgradeData will be instantiated. Afterward, the
corresponding upgrade methods will be executed.

Versioning

Unlike Magento 1, Magento 2 does not contain the inbuilt migration versioning tools,
meaning that a developer must check the current module version manually.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

class UpgradeSchema implements UpgradeSchemalnterface

{
public function upgrade(

\Magento\Framework\Setup\SchemaSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context

) {
$setup->startSetup();

if (version_compare($context->getVersion(), '1.5.1"') < @) {

//code to upgrade to 1.5.1

if (version_compare($context->getVersion(), '1.5.7"') < @) {
//code to upgrade to 1.5.7

$setup->endSetup();

Which types of functionality correspond to each
type of setup script?

InstallSchema class

This setup script is used for modifying database structure at the module’s first
installation.

<?php
namespace Vendor\Module\Setup;
class InstallSchema implements \Magento\Framework\Setup\InstallSchemaInterface

{

public function install(

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Framework\Setup\SchemaSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context)

{

$setup->startSetup();

$table = $setup->getConnection()->newTable(
$setup->getTable('custom_table')

)->addColumn(
'custom_id",
\Magento\Framework\DB\Dd1\Table: : TYPE_INTEGER,
null,
['identity' => true, ‘'unsigned' => true, ‘'nullable' => false, 'primary’

=> true],

"Custom Id'

)->addColumn(
'name’,
\Magento\Framework\DB\Dd1l\Table: : TYPE_TEXT,
255,
[1,

'Custom Name'
)->setComment (
"Custom Table'

)s
$setup->getConnection()->createTable($table);

$setup->endSetup();

InstallData class

This setup script is applied for adding and modifying the data at the module’s first
installation.

<?php
namespace Vendor\Module\Setup;

class InstallData implements
\Magento\Framework\Setup\InstallDataInterface

{

public function upgrade(

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Framework\Setup\ModuleDataSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context)

{
$setup->startSetup();
// data installation code
$setup->endSetup();

}

UpgradeSchema class

The setup script is applied for modifying database structure at the module update.

<?php
namespace Vendor\Module\Setup;

class UpgradeSchema implements
\Magento\Framework\Setup\UpgradeSchemalnterface
{
public function upgrade(
\Magento\Framework\Setup\SchemaSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context
)
$setup->startSetup();
if (version_compare($context->getVersion(), '2.3.1") < @) {
// upgrade schema to version 2.3.1

¥
$setup->endSetup();

UpgradeData class

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

This setup script is applied for adding and modifying the data in the event of module
upgrade.

<?php
namespace Vendor\Module\Setup;

class UpgradeData implements
\Magento\Framework\Setup\UpgradeDataInterface

{

public function upgrade(
\Magento\Framework\Setup\ModuleDataSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context

) {
$setup->startSetup();

if (version_compare($context->getVersion(), '2.3.1"') < @) {
// upgrade data to version 2.3.1

}
$setup->endSetup();

Recurring scripts

Recurring scripts are run each time setup:upgrade command is launched and depend
on the module’s version.

<module_dir>/Setup/Recurring.php
<?php
namespace Vendor\Module\Setup;

class Recurring implements
\Magento\Framework\Setup\InstallSchemaInterface

{

public function install(

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Framework\Setup\SchemaSetupInterface$setup,
\Magento\Framework\Setup\ModuleContextInterface$context

)

echo 'Running';

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 5: Using the Entity-Attribute-Value (EAV) Model

5.1 Demonstrate ability to use EAV model
concepts

Describe the EAV hierarchy structure

EAV (Entity-attribute-value) is a model for storing entity attribute values in a certain
storage place. For storage, Magento 2 supports MySQL-compatible databases (like
MySQL, MySQL NDB Cluster, MariaDB, Percona, and others).

The table of the classic EAV model has 3 columns:
1. entity (object to which the attribute value must be set)
2. attribute
3. value

In the Flat model, attribute values are stored in the same table as the entities; a separate
column is created for each attribute in the table.

In the EAV model, attribute values are stored in a separate table. A separate column is
not created for each attribute, and a new row is created for each attribute value of an
entity in the EAV table.

How EAV data storage works in Magento

Differences between a classic EAV model and the one used
in Magento

1. A backend type (varchar, int, text ...) is assigned for each attribute

2. Each EAV entities type have a separate table. EAV entities types are stored in
eav_entity_type table. The names of the tables, where the entities are stored, are
located in entity_table column.

3. System EAV entities are stored in eav_entity table

4. Attributes, that have backend type as static, are stored in the same table as
entities. These attributes have global scope.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

5. Each backend type of each entity type has its own table, in which attribute values
are stored. The name of this table is crafted according to the template
{entity_table} _ {backend_type}, where entity_table is the name of the entity table
and backend_type is the backend type of the attribute. These tables include the
following columns: value_id (int), attribute_id (int), store_id ** (int), entity_id *
(int), value (depending on the backend type).

To get a better understanding of the connections, study this scheme:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

|cahlog_pmduct_enti!y_dateti me

Catalog Product Datetime Attribute
Backend Table

wvalue_id int{11)
attribute_id integer(5)
store_id smallint(5)
entity_id integer{10)
catalog_product_entity Nalue tatme

Catalog Product Table

; I T duct_entity_decimal
entity_id int{10) | bl I T
|Catalog Product Decimal Attribute
attribute_set_id smallint(5) Backend Table
yped pEchana) value id int(11)
= VArmAnG) atiribute_id integer(5)
bas oplions smallint(o) store_id smallini(5)
reguired_options smallint{5) antity_id integer(10)
created At Umestamp) value decimal(12.0,4.0)
updated_at timestamp
|cahlog_product_antity_lnt
Catalog Product Integer Attribute
Backend Table
|eav_enti‘ty_typa |eav_aﬂ:ribu‘ta value_id int{11)
Er et SR attribute_id integer(s)
store_id smallint{5)
< | entity_type_id smallint{5) attribute_id smallint{5) entity_id integer{10}
entity_type_code wvarchar(50) ——— | entity_type_id integer(5) value int{11)
entity_model wvarchar(255) attribute_code wvarchar(258)
attribute_model varchar(255}) attribute_model varchar(255)
entity_table varchar(255) backend_model varchar(255)
|cahlog_pmduct_antity_hax‘l
NAletHto- profic VEIChE205) hackend typs varchar(f) Catalog Product Text Attribute
entity_id_field varchar(256) backend_table varchar(255) Backend Table
is_data_sharing smallint{5) frontend_model varchar(255) value id int{11)
data_sharing_key wvarchar(100} frontend_input varchar(50) attribute_id integer(5)
default_attribute_set id smallint(5) frontend_label varchar(255) store id smallint{5)
increment_model wvarchar(255) frontend_class wvarchar(258) entity id integer(10)
increment_per_store smallint{5) source_model varchar(255) allie text
increment_pad_length smallint{5) is_required smallint(5)
increment_pad_char warchar(1) is_user_defined smallint(5)
additional_attribute_table wvarchar{255) default_value text I 1 a1 t P
5 g - = | 9P _entity_
entity_attribute_collection varchar(255) is_unigque smallint{5) Catalog Product Varchar Attribute
note varchar(255) Paduid Tabie

\ wvalue_id int{11)

= | attribute_ig integer(5)

\ store_id smallint{5)
~ | entity_id integer(10)
value varchar{255)

To get / record attribute value, you need:
1. store_id**
2. entity_id*
3. Entity_table or entity_type_id
4. attribute_id

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

If entity_table is unknown, but entity_type_id is known, then entity_table can be obtained
from the eav_entity_type table.

Magento receives entity attribute values as one large SQL query, which is generated by
the following algorithm:

1. Get all attribute tables for a specific entity_type

2. For each table, do the following:

e aselect subquery is created from the current table, which requests value and
attribute_id
the condition is added that entity_id = ID of the requested entity *
a condition is added for each scope that store_id IN (S scope-> getValue ()) **
sorted by store_id in a descending order

3. UNION ALL of all subqueries is performed.

* the field is not necessarily called entity_id. Magento uses Smetadata->getLinkField() to
get the field name.

** the field is not necessarily called store_id. Magento uses Sscope->getldentifier() to
get the field name.

What happens when a new attribute is added to the
system

When a new attribute is added, new records are created in the database. Similar records
are created for each attribute type.
Let's consider some standard attribute types.

Text Field

Let's examine how to create a new attribute of the Text Field type.

1. A new record in eav_attribute table is made

attribute_id entity_type_id attribute_code

154 4 test_code

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

2. One entry per store view is created in the eav_attribute_label table with the Label
attribute.

attribute_label_id attribute_id store_id value

17 154 1 Test label

3. A new record in the catalog_eav_attribute table is created

attribute_id frontend_input_render | is_global
er
154 NULL 1
Dropdown

Manage Options (Values of Your Attribute)

Is Default Admin * Default Store View

() 1 One Delete
2 Two Delete
3 Three Delete

Add Option

Differences compared to Field:

e eav_attribute.frontend_input = “select”

e eav_attribute.source_model =
“Magento\Eav\Model\Entity\Attribute\Source\Table"
eav_attribute.backend_type = “int”
eav_attribute.default_value = eav_attribute_option.option_id by default
Lines are added in eav_attribute_option, one for each value

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

option_id attribute_id sort_order

210 155 1

211 155 2

212 155 3

e Lines are added in eav_attribute_option_value

value_id option_id store_id value

208 211 0 2

210 212 0 3

205 210 1 One

207 211 1 Two

209 212 1 Three

206 210 0 1
Price

Differences compared to Text Field:
e eav_attribute.frontend_input = “price”
e cav_attribute.backend_model =
“Magento\Catalog\Model\Product\Attribute\Backend\Price”
e eav_attribute.backend_type = “decimal”

Media image

Differences compared to Text Field:
e eav_attribute.frontend_input = “media_image”

Phone: +1 650 353 23 01

E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Text swatch

Manage Swatch (Values of Your Attribute)

Is Default Admin * Default Store View
® 1 One
2 Two
3 Three
Add Swatch

Differences compared to Dropdown:

e catalog_eav_attribute.additional_data look similarly
{"swatch_input_type":"text","update_product_preview_image":"0","use_product_im
age_for_swatch":0}

e Lines into eav_attribute_option_swatch are added

swatch_id option_id store_id type value
1 213 0 0 1
6 215 1 0 3
2 213 1 0 1
4 214 1 0 2
3 214 0 0 2
5 215 0 0 3

How are attributes presented in the admin?

Attributes consist of a name (Label) + field, the value of which the administrator can
change.
The following attribute properties affect the display:

e frontend_model - a class that describes the field display in the frontend section
of a site. Inherited from Magento \ Eav \ Model \ Entity \ Attribute \ Frontend \

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

AbstractFrontend and overrides the getValue method to change the displayed
attribute values

e frontend_input - the form element that is displayed in the admin section of the
site

e frontend_label - the name of the attribute, displayed in the admin section of the
site. It is also displayed in the site frontend, unless otherwise specified in the
eav_attribute_label table (in the attribute settings it is changed in the “Manage
Labels” tab)

e frontend_class - used to validate the attribute value in the admin section of the
site. In the attribute settings, the property is called Input Validation for Store
Owner. For e-mail validation, the frontend_class property is set to
“validate-email”.

Input Validation for Store

Email v
Owner

Test 789

T M R
:5t-\.'- =} f-E*--'!

Please enter a valid email address (Ex: johndoe@domain.com).

Magento has the following default attribute types:

Text Field

Has the form of text input.

Test label
[global]

Text Area

Has the form of a many-line input field. A WYSIWYG editor can be enabled for it in the
attribute settings.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Test label 6

[store view]

Date

Has the form of a text field for data input and a drop-down calendar.

Test label 7

[store view]

Yes/No

Has the form of a switcher with two entities: Yes or No.

Test label 9 Z Mo

[store view]

Multiple Select

Has the form of a list that offers to select several values, or no value at all.

Test label 10 1
[store view]
3
A
Dropdown

Has the form of a drop-down list that offers to select only one value.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Test label 2 One -
[store view]

Price

Has the form of a text field with a currency symbol.

Test label 3 5 44
[Elobal]
Media Image

Media Image is different from any other fields, for it has no field. Instead, an attribute of
Media Image type adds role to the product image and video.

Role
Swatch
Base
Small
230%219 px, 7 KB ThoinbiEil
Test label 4 v Test label 4

Fixed Product Tax

Allows to modify taxes for countries and its states. Has the form of a table with a
country/state and corresponding tax. The type is added by the Magento_Weee module,
where WEE stands for Waste Electrical and Electronic Equipment Directive.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Test label 11 *

Country/State Tax * Action
e
Belarus v 0 []
Add

Visual Swatch

Visual Swatch is provided for the administrator, the same as Dropdown. The user sees it
as a button, filled with color, or containing a picture. This field can be used in
Configurable products, for instance, for the color selection.

Manage Swatch (Values of Your Attribute)

Is Default Swatch Admin *

[| 1
[P 2
9l : Test label 12 1 i
Add Swatch [store view]
Text Swatch

Is provided similarly to Visual Swatch, only the button content is in text format.

Test label 5 Three v

store view]

What is the role of attribute sets and attribute
groups?

Attribute set are applied to display different attributes during various product types
editing (eg., shoes and clothes). For example, we have shoe_size and clothing_size
attributes, and we need to display the first one for shoes, and the second - for clothes.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Attribute set allows to hide the unnecessary attributes, display the needed ones, modify
the sorting and group. Groups simplify the process of filling product information by the
administrator, but have no effect on product loading / storing logic.

Below is a screenshot, where Design and Schedule Design Update are attribute groups,
and the nested elements are attributes.
Attributes in attribute set settings:

 Design
=] page_layout
=] options_cantainer
=] custom_layout_update
| Schedule Design Update
=] custom_design_from
=] custom_design_ta
=] custom_design
=] custom_layout

Attributes in the product:
Design

Layout No layout updates v
[store view]

Display Product Options In Block after Info Column | «
[store view]

Layout Update XML
[store view]

Schedule Design Update

Schedule Update From To
[store view]
New Theme -- Please Select --
[store view]
Mew Layout No layout updates v
[store view]

Which additional options do you have when saving
EAV entities?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

The EAV entity modification page offer the following capabilities:

e Default attribute value. Allows to set the value that will be inserted into the
attribute field if it is not filled in. This simplifies the process of adding and
modifying the entities. These are the potential default attribute values for the
product:

o

o O O 0O O O O O O

o

Text Field - any one-line text

Text Area - any multi-line text

Date - any date

Yes/No - yes or no

Multiple Select - any number of options
Dropdown - one option

Price - no default value

Media image - no default value
Visual Swatch - one option

Text Swatch - one option

Fixed Product Tax - no default value

e Scope selection. Scope allows to set different attribute values for different
website / store / view. Below is a list of the possible attribute scope for the
product:

o

0O O O O O O

o O O

o

Text Field - store view / website / global
Text Area - store view / website / global

Date - store view / website / global

Yes/No - store view / website / global
Multiple Select - store view / website / global
Dropdown - store view / website / global
Price - website / global (configured in Stores - Configuration - Catalog -
Catalog - Price - Catalog Price Scope)

Media image - store view / website / global
Visual Swatch - store view / website / global
Text Swatch - store view / website / global
Fixed Product Tax - global

e Attribute set selection (products only). Allows to regroup or hide the attributes
that do not suit the current product type.

Before saving an EAV entity at the client side, we have the following features:

Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e Prohibition to save entities, if there are empty attribute fields with the is_required
=1 feature. It allows to define what attributes of the entity are required to be
filled in.

e Validation of the attribute fields values by the algorithm, set in frontend_class.
The following frontend classes are supported by default it Magento:

validate-number: Decimal Number

validate-digits: Integer Number

validate-email: Email

validate-url: URL

validate-alpha: Letters

validate-alphanum: Letters (a-z, A-Z) or Numbers (0-9)

o O O O O O

Before saving an EAV entity at the server side, we have the following features:

e Check attribute fields with is_required = 1 for fullness. Magento checks the
required fields on both the client and server sides.
Uniqueness check of the attribute fields with is_unique = 1.
Perform operations in backend_model
o Validation (validate method). Allows to realize additional server check
before saving.
Operation before saving (beforeSave method)
Operation after saving (afterSave method)

Module catalog has an additional catalog_eav_attribute table for attributes, where the
following parameters are stored:

Frontend Input Renderer
Is Global

Is Visible

Is Searchable

Is Filterable

Is Comparable

Is Visible On Front

Is HTML Allowed On Front
Is Used For Price Rules

Is Filterable In Search

Is Used In Product Listing
Is Used For Sorting

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Is Visible In Advanced Search
Is WYSIWYG Enabled

Is Used For Promo Rules

Is Required In Admin Store

Is Used in Grid

Is Visible in Grid

Is Filterable in Grid

These parameters allow to perform a more sophisticated attribute configuration.

How do you create customizations based on
changes to attribute values?

To customize an attribute, modify the following attribute features:

backend_model
source_model

attribute_model
frontend_model

Attribute Model

The model allows to perform a more sophisticated attribute setting. By default,
Magento\Eav\Model\Entity\Attribute is used, and a model, different from the default
one, is rarely applied.

Backend Model

The model is used for processing and validating the attribute values.

By default, Magento\Eav\Model\Entity\Attribute\Backend\DefaultBackend is used.
It allows to define:

e validate

e afterLoad

e beforeSave

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

afterSave
beforeDelete
afterDelete
and other
Example:

class TestBackend extends
\Magento\Eav\Model\Entity\Attribute\Backend\AbstractBackend

{
public function validate($object)

{
$attribute_code = $this->getAttribute()->getAttributeCode();

$value = $object->getData($attribute code);

if ($value == 'test') {
throw new
\Magento\Framework\Exception\LocalizedException(__ ("Value can't be
test"));

}

return true;

Source Model

The model is used for providing the list of the attribute values.
By default, Magento\Eav\Model\Entity\Attribute\Source\Config is used.

Example:

class TestSource extends
\Magento\Eav\Model\Entity\Attribute\Source\AbstractSource

{
public function getAllOptions()

{
if (!'$this-> options) {

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this-> options = [
['label' => _ ('Label 1'), 'value' => 'value 1
["label' => _ ('Label 2'), 'value' => 'value 2
["label' => _ ('Label 3'), ‘'value' => 'value 3'
["label' => _ ('Label 4'), ‘'value' => 'value 4
15
}

return $this-> options;

Frontend Model

Frontend model is used for displaying frontend part of the website.
By default, Magento\Eav\Model\Entity\Attribute\Frontend\DefaultFrontend is applied.

Example:
class TestFrontend extends
\Magento\Eav\Model\Entity\Attribute\Frontend\AbstractFrontend

{
public function getValue(\Magento\Framework\DataObject $object)

{
$attribute _code = $this->getAttribute()->getAttributeCode();

$value = $object->getData($attribute_code);
return nl2br(htmlspecialchars($value));

Describe the key differences between EAV and flat
table collections

For a developer, there is no big difference between EAV and Flat. Models, resource
models and collections are created similarly.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Let us examine how the classes for EAV (City) and Flat (Country) are created.

Collections

EAV

<?php
namespace Belvg\Geo\Model\ResourceModel\City;

class Collection extends
\Magento\Eav\Model\Entity\Collection\AbstractCollection

{

protected function _construct()

{
$this->_init(
‘Belvg\Geo\Model\City"',
'Belvg\Geo\Model\ResourceModel\City"
)
}
}
FLAT
<?php

namespace Belvg\Geo\Model\ResourceModel\Country;

class Collection extends
\Magento\Framework\Model\ResourceModel\Db\Collection\AbstractCollecti
on

{
protected function _construct()
{
$this->_init(
'Belvg\Geo\Model\Country"',
'Belvg\Geo\Model\ResourceModel\Country"
)
}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Resource model

EAV

<?php
namespace Belvg\Geo\Model\ResourceModel;

class City extends \Magento\Eav\Model\Entity\AbstractEntity

{
public function getEntityType()

{
if (empty($this->_type)) {
$this->setType(\Belvg\Geo\Model\City: :ENTITY);
}
return parent::getEntityType();
}
}
FLAT
<?php

namespace Belvg\Geo\Model\ResourceModel;

class Country extends
\Magento\Framework\Model\ResourceModel\Db\AbstractDb

{

protected function _construct()

{
$this->_init(
'belvg _geo_country',
'entity_id'
)
}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Models

EAV

<?php
namespace Belvg\Geo\Model;

class City extends \Magento\Framework\Model\AbstractModel

{
const ENTITY = 'belvg geo city';

protected function _construct()

{
$this->_init('Belvg\Geo\Model\ResourceModel\City");

FLAT

<?php
namespace Belvg\Geo\Model;

class Country extends \Magento\Framework\Model\AbstractModel
{

protected function construct()

{
$this->_ init('Belvg\Geo\Model\ResourceModel\Country");

Difference between EAV classes and FLAT

Additionally, the following methods, that contain the attribute as its code or its object,
are added into EAV collections:
e addAttributeToSelect converts attribute into its code and calls addFieldToSelect

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e addAttributeToFilter converts attribute into its code and calls addFieldToFilter
e addAttributeToSort converts attribute into its code and calls addOrder

Additionally, in EAV resource models, the methods for working with attributes are added
and methods load, save, delete are overridden.

EAV utilizes the following classes for working with attributes:
e Magento\Eav\Model\ResourceModel\CreateHandler - to create values in new
entities
e Magento\Eav\Model\ResourceModel\UpdateHandler - to modify / delete / add
values into the existing entities
e Magento\Eav\Model\ResourceModel\ReadHandler - to get the values

The key difference between EAV and Flat lies in data storage.

The configuration settings in the admin panel have Use Flat Catalog Category and Use
Flat Catalog Product options. The settings allow to edit the sources of the uploaded
products and categories, changing them from EAV tables for FLAT index tables.

Product attribute gets to the flat table in case it complies to at least one condition:

backend_type is set as static

the field filter is enabled

the attribute is used in the product list
the attribute is used for sorting

Product collection is a Magento\Catalog\Model\ResourceModel\Product\Collection
class. In this class, many methods look the following way:

if ($this->isEnabledFlat()) {
} else {

}

Therefore, if Flat is enabled, one action is performed, but in case it is disabled, then
another action is triggered.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

The situation is different with categories. Magento\Catalog\Model\Category model is
initialized the following way:

protected function _construct()
{

// If Flat Index enabled then use it but only on frontend

if ($this->flatState->isAvailable()) {
$this-> init(\Magento\Catalog\Model\ResourceModel\Category\Flat::clas
s);

$this-> useFlatResource = true;
} else {

$this->_init(\Magento\Catalog\Model\ResourceModel\Category::class);
}

Therefore, different resource models are used.
Collections also divided into two classes, unlike the products:
e Magento\Catalog\Model\ResourceModel\Category\Collection
e Magento\Catalog\Model\ResourceModel\Category\Flat\Collection

In which situations would you use EAV for a new
entity

Using EAV for a new entity is advisable in case at least one of the following conditions
is true:

1. Thereis a scope.

2. Admins and modules have the ability to add attributes into an entity or modify
attributes backend type.

3. Potentially, the number of columns in Flat model can exceed 1017.

4. Potentially, the required amount of indexes, like INDEX in Flat model, can exceed
64 or reach the amount when the entities’ adding / modifying / deletion will be
slow.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

What are the pros and cons of EAV architecture?

Advantages of EAV over Flat

1. The implementation of SCOPE in the Flat model stores a lot of unnecessary
information. For example, if you want to redefine one attribute in another scope,
then both EAV and Flat will create one line each. But in EAV, the number of
columns is always fixed, while in Flat it can reach 1000. Additionally, there is a
problem when the value is inherited from the parent scope. You can mark such
values as NULL, but then you must prevent the attributes from being NULL if they
are not inherited.

2. Quickly add a new attribute. Adding a new attribute does not change the EAV
table in any way. In Flat, you need to add a new column. The ALTER TABLE
operation is also slow. This is especially noticeable in large tables. *

3. Change the backend type attribute faster. To change the attribute type in EAV,
you need to move the this attribute data from one table to another. For Flat, you
need to perform ALTER TABLE. *

4. EAV allows to separate attribute values from entity field values.

5. The following InnoDB restrictions on the table restrict Flat:

The table may contain no more than 1017 columns
A table can contain a maximum of 64 indexes of type INDEX

Disadvantages of EAV over Flat

1. Getting entity attribute values in EAV is slower than in Flat **
2. Search by attribute value in EAV is slower than in Flat **
3. In Flat, you can create an index on several attributes to speed up the search **

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

* As for EAV, when adding / changing an attribute type, ALTER TABLE is performed if
the attribute's backend type is static

** To speed up operations, some attributes can be set the backend type as static and, if
necessary, create indexes on the column with the attribute in the database, but then the
visibility of the attribute will only be global. Another option is to use a flat table as an
index if the data is allowed not to be up to date.

5.2 Demonstrate ability to use EAV entity
load and save

The Magento\Framework\EntityManager\EntityManager class was introduced in
Magento 2.1 for loading, saving, checking for existence, deleting EAV and Flat objects
(now it is considered deprecated).

To work via EntityManager, you must provide information about the entity interface in
di.xml for MetadataPool and for HydratorPool.

<type name="Magento\Framework\EntityManager\MetadataPool">
<arguments>
<argument name="metadata" xsi:type="array">
<item name="MyVendor\MyModule\Api\Data\MyEntityInterface"
xsi:type="array">
<item name="entityTableName"
xsi:type="string">myvendor_mymodule_myentity entity</item>
<item name="eavEntityType"
xsi:type="string">myvendor_mymodule_myentity</item>
<item name="identifierField" xsi:type="string">entity_id</item>
<item name="entityContext" xsi:type="array">
<item name="store"
xsi:type="string">Magento\Store\Model\StoreScopeProvider</item>
</item>
</item>
</argument>
</arguments>
</type>

<type name="Magento\Framework\EntityManager\HydratorPool">

<arguments>
<argument name="hydrators" xsi:type="array">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<item name="MyVendor\MyModule\Api\Data\MyEntityInterface"
xsi:type="string">Magento\Framework\EntityManager\AbstractModelHydrator</item>
</argument>
</arguments>
</type>

Magento\Framework\EntityManager\OperationPool class contains operations array
that call EntityManager for loading, saving, existence check and object deletion. The
operation is performed by execute method.

Default operations:

checkIfExists -
Magento\Framework\EntityManager\Operation\CheckIfExists

read - Magento\Framework\EntityManager\Operation\Read

create - Magento\Framework\EntityManager\Operation\Create

update - Magento\Framework\EntityManager\Operation\Update

delete - Magento\Framework\EntityManager\Operation\Delete

By default, CheckIfExists operation checks for the existence of an entry in the main
table with a direct SQL query.

By default, Read operation performs three sub-operations:
e ReadMain
e ReadAttributes
e ReadExtensions

By default, Create operation performs three sub-operations:
e CreateMain
o CreateAttributes
e CreateExtensions

By default, Update operation performs three sub-operations:
e UpdateMain
e UpdateAttributes
e UpdateExtensions

By default, Delete operation performs three sub-operations (in reverse order):
e DeleteExtensions

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e DeleteAttributes
e DeleteMain

Attribute operations are located in the class Magento \ Framework \ EntityManager \
Operation \ AttributePool.

Extensions operations are located in the class Magento \ Framework \ EntityManager \
Operation \ ExtensionPool.

Using overrides of attributes operations, EAV applies the following classes for
operations:

e Magento\Eav\Model\ResourceModel\CreateHandler
e Magento\Eav\Model\ResourceModel\UpdateHandler
e Magento\Eav\Model\ResourceModel\ReadHandler

CreateHandler writes attribute values into the new entities.

UpdateHandler takes a snapshot thanks to ReadSnapshot (which is based on
ReadHandler). Then, UpdateHandler:

e Changes the value, if the attribute is modified relative to Snapshot and the new
value is not empty or the attribute allows empty values

e Deletes, if the attribute is changed relative to Snapshot and the new value is
empty and the attribute does not allow empty values

e Creates, if the attribute is absent in Snapshot and the new value is not empty or
the attribute allows empty values

ReadHandler performs reading, using the following algorithm:

1. Get all attribute tables for a specific entity_type
2. For each table, the following is performed:

A. a select subquery is created from the current table, which requests value and
attribute_id

B. the condition is added that entity_id = ID of the requested entity

C. acondition is added for each scope from the context that store_id IN (Sscope->
getValue ()

D. sorted by store_id in descending order

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

3. Performs UNION ALL of all subqueries.
4. Executes an SQL query
5. Writes the resulting values are written into the SentityData array.

What happens when an EAV entity has too many
attributes?

The advantage of EAV, compared to Flat, is that Flat table in InnoDb can not contain
more than 1017 columns. In EAV, the number of attributes is limited by the maximum
size of innodb tables.

How does the number of websites/stores affect the
EAV load/save process?

The number of websites/stores impacts the entity loading / saving.
Let us consider the influence of websites/stores on attributes saving and loading.

In Magento, scope in EAV is realized due to store_id column in the EAV attribute value
tables.
e store_id
e store_id

9, if scope global
ID of the selected Store View, if not global

Attribute values are loaded the following way:

e store id IN (STORE_IDS), where STORE_IDS are Store View identificators of
the current context.

The context is calculated recursively:

In STORE_IDS array, the identificator of the current scope is added.

In case the current scope has Fallback scope, then an operation is repeated for
Fallback.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Example: store_id = 5, fallback is specified as 3, and 3 has fallback as 0. Then
STORE_IDS is: [5, 3, 0].

In most cases, the standard scope provider Magento \ Store \ Model \
StoreScopeProvider is used.

It works as follows:

Store_id is specified as the identifier of the current Store View

If current store_id! = 0, then it adds a fallback before as 0

It turns out that number of websites / stores does not directly affect * the upload speed,
because when StoreScopeProvider is used during loading, the context contains no more

than two store_id, i.e. does not depend on the number of websites / stores.

* the number of websites / stores always indirectly affects the loading of attribute
values, as the more rows in the attribute value tables, the slower is the load.

Let us consider the value of store_id while maintaining the attribute value.

Attribute scope All Store Views Certain Store View
global store_id =0 store_id =0
website store_id =0 Entries created / modified

for each Store View of the
given Website

store view store_id =0 store_id = ID Store View

Thus, the attribute saving speed, depending on the number of websites / stores, is
affected by the presence of modified attributes from the scope website. The more Store
Views are in the Website, the more entries in the database you need to create or modify
entries, the slower is the saving.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

How would you customize the load and save
process for an EAV entity in the situations
described here?

To override the operations, add di.xml into the following:

<type name="Magento\Framework\EntityManager\OperationPool">
<arguments>
<argument name="operations" xsi:type="array">
<item name="MyVendor\MyModule\Api\Data\MyEntityInterface"
xsi:type="array">
<item name="checkIsExists"
xsi:type="string">MY_NAMESPACE\CheckIsExists</item>
<item name="read" xsi:type="string">MY_NAMESPACE\Read</item>
<item name="create" xsi:type="string">MY_NAMESPACE\Create</item>
<item name="update" xsi:type="string">MY_NAMESPACE\Update</item>
<item name="delete" xsi:type="string">MY_NAMESPACE\Delete</item>
</item>
</argument>
</arguments>
</type>

You can partially override, for example, a single read operation, then the default
operations will be used for the rest of the operations.

We can also override work operations with the attributes for EAV:

<type name="Magento\Framework\EntityManager\Operation\AttributePool">
<arguments>
<argument name="extensionActions" xsi:type="array">
<item name="eav" xsi:type="array">
<item name="MyVendor\MyModule\Api\Data\MyEntityInterface"

xsi:type="array">

<item name="read"
xsi:type="string">MY_NAMESPACE\ReadHandler</item>

<item name="create"
xsi:type="string">MY_NAMESPACE\CreateHandler</item>

<item name="update"
xsi:type="string">MY_NAMESPACE\UpdateHandler</item>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</item>
</item>
</argument>
</arguments>
</type>

Extensions override:

<type name="Magento\Framework\EntityManager\Operation\ExtensionPool">
<arguments>
<argument name="extensionActions" xsi:type="array">
<item name="MyVendor\MyModule\Api\Data\MyEntityInterface"
xsi:type="array">
<item name="read" xsi:type="array">
<item name="myReader"
xsi:type="string" >MY_NAMESPACE\ReadHandler</item>
</item>
<item name="create" xsi:type="array">
<item name="myCreator"
xsi:type="string" >MY_NAMESPACE\CreateHandler</item>
</item>
<item name="update" xsi:type="array">
<item name="myUpdater"
xsi:type="string" >MY_NAMESPACE\UpdateHandler</item>
</item>
</item>
</argument>
</arguments>
</type>

5.3 Demonstrate ability to manage
attributes

Describe EAV attributes, including the
frontend/source/backend structure

Backend Model performs loading, saving, deletion and validation of the attribute.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Source Model provides a list of values for the attributes, which is later used for
dropdown/multiselect attributes.

Frontend Model displays the attribute at the frontend side.

How would you add dropdown/multiselect
attributes?

You can create attributes through the setup script (Vendor \ Module \ Setup \
InstallData or Vendor \ Module \ Setup \ UpgradeData) or via the admin panel (for
products only). In order to create dropdown / multiselect attributes, it is necessary to
specify the frontend_input attribute as “select” or “multiselect” for a single or multiple
selection respectively. Additionally, you must specify the source model, which will point
to a list of possible values. If the source model is Magento \ Eav \ Model \ Entity \
Attribute \ Source \ Table, then you can specify the possible values of this attribute in
the option property when creating an attribute through the setup script.

Example:

<?php
namespace Vendor\Module\Setup;

use Magento\Eav\Setup\EavSetupFactory;

use Magento\Framework\Setup\InstallDataInterface;

use Magento\Framework\Setup\ModuleContextInterface;
use Magento\Framework\Setup\ModuleDataSetupInterface;

class InstallData implements InstallDatalnterface

{
/**
* @var EavSetupFactory
*/
protected $eavSetupFactory;

public function _ construct(EavSetupFactory $eavSetupFactory)

{
$this->eavSetupFactory = $eavSetupFactory;

}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function install(ModuleDataSetupInterface $setup, ModuleContextInterface
$context)

{
$eavSetup = $this->eavSetupFactory->create(['setup’ => $setup]);

$eavSetup->addAttribute(
\Magento\Catalog\Model\Product: :ENTITY,
'my_attribute’,
[
"type' => 'int',
‘label' => 'My Attribute’,
"input’ => 'select’,
'source' =>
\Magento\Eav\Model\Entity\Attribute\Source\Table::class,
'required' => false,
‘option' => ['values' => ['Value 1', 'Value 2', 'Value 3']]

]
)s
}
}
Stock Status In Stock ¥
[elobal]

Value 1

My Attribute v Value 2 :|
Value 3

What other possibilities do you have when adding
an attribute (to a product, for example)?

EAV attribute has several features that we can specify.

Magento\Eav\Model\Entity\Setup\PropertyMapper class contains the conversion of
property names in the setup script into EAV attribute property in the database.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Feature in setup script

Feature in the database

Default value

attribute_model attribute_model null
backend backend_model null
type backend_type varchar
table backend_table null
frontend frontend_model null
input frontend_input text
label frontend_label null
frontend_class frontend_class null
source source_model null
required is_required 1
user_defined is_user_defined 0
default default_value null
unique is_unique 0

note note null
global is_global \Magento\Eav\Model\Entit

y\Attribute\ScopedAttribut
elnterface::SCOPE_GLOBA
L

You can also specify:

e sort_order - attribute position, recorded in eav_entity_attribute
e group - adds attributes in a certain group
e option - the list of values for dropdown/multiselect attributes

Additionally, Magento/Catalog has the following properties (according to
\Magento\Catalog\Model\ResourceModel\Setup\PropertyMapper):

Feature in setup script

Feature in database

Default value

Phone: +1 650 353 23 01

E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

input_renderer

frontend_input_renderer

null

global is_global \Magento\Eav\Model\Entit
y\Attribute\ScopedAttribut
elnterface::SCOPE_GLOBA
L

visible is_visible 1

searchable is_searchable 0

filterable is_filterable 0

comparable is_comparable 0

visible_on_front is_visible_on_front 0

wysiwyg_enabled is_wysiwyg_enabled 0

is_html_allowed_on_front |is_html_allowed_on_front |0

visible_in_advanced_searc |is_visible_in_advanced_sea |0

h rch

filterable_in_search is_filterable_in_search 0

used_in_product_listing used_in_product_listing 0

used_for_sort_by used_for_sort_by 0

apply_to apply_to null

position position 0

used_for_promo_rules is_used_for_promo_rules

is_used_in_grid is_used_in_grid 0

is_visible_in_grid is_visible_in_grid 0

is_filterable_in_grid is_filterable_in_grid 0

Phone: +1 650 353 23 01

E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe how to implement the interface for
attribute frontend models. What is the purpose of
this interface? How can you render your attribute
value on the frontend?

To create Frontend model, create a class, inherited from
Magento\Eav\Model\Entity\Attribute\Frontend\AbstractFrontend, and override
getValue method.

Then, set frontend_model as the name of the newly created class.

class TestFrontend extends
\Magento\Eav\Model\Entity\Attribute\Frontend\AbstractFrontend

{
public function getValue(\Magento\Framework\DataObject $object)

{
$attribute_code = $this->getAttribute()->getAttributeCode();

$value = $object->getData($attribute code);
return nl2br(htmlspecialchars($value));

The purpose of the interface is to decrease the code dependency (dependency inversion
principle).

Identify the purpose and describe how to implement
the interface for attribute source models.

The model is used for providing a list of attribute values for dropdown/multiselect
attributes. Source model realization example:

class TestSource extends
\Magento\Eav\Model\Entity\Attribute\Source\AbstractSource

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function getAllOptions()

{
if (!'$this-> options) {
$this-> options = [
['label' => _ ('Label 1'), 'value' => 'value 1'],
["label' => _ ('Label 2'), ‘'value' => 'value 2'],
["label' => _ ('Label 3'), ‘'value' => 'value 3'],
["label' => _ ('Label 4'), ‘'value' => 'value 4']
15
}
return $this-> options;
}

For a given dropdown/multiselect attribute, how can
you specify and manipulate its list of options?

The values are stored in the eav_attribute_option_value table if the source model is the
Magento \ Eav \ Model \ Entity \ Attribute \ Source \ Table class or is inherited from it.
The values can be added when creating an attribute in the option property, or you can
call the Magento \ Eav \ Setup \ EavSetup-> addAttributeOption ($ option) method.

If the source model is not inherited from Magento \ Eav \ Model \ Entity \ Attribute \
Source \ Table, then, to change the list of values, you can:

create a plugin on the source model on the getAllOptions method

create a new source model, inherited from the mutable class, change the
behavior of the getAllOptions method and specify the new source model in the
attributes

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Identify the purpose and describe how to implement
the interface for attribute backend models. How
(and why) would you create a backend model for an
attribute?

Backend modules are created with a purpose to upload / save / delete / validate
attribute values.

Example of attribute value validation:

class TestBackend extends
\Magento\Eav\Model\Entity\Attribute\Backend\AbstractBackend

{
public function validate($object)

{
$attribute_code = $this->getAttribute()->getAttributeCode();

$value = $object->getData($attribute_code);
if ($value == 'test') {
throw new \Magento\Framework\Exception\LocalizedException(__ ("Value

can't be test"));

}

return true;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe how to create and customize attributes.
How would you add a new attribute to the product,
category, or customer entities? What is the
difference between adding a new attribute and
modifying an existing one?

Setup scripts are applied to create or modify an attribute
Vendor\Module\Setup\InstallData and Vendor\Module\Setup\UpgradeData.

Product attributes can also be created via the admin panel.

To add an attribute, use Magento\Eav\Setup\EavSetup->addAttribute(SentityTypeld,
Scode, Sattr) method, for modification -
Magento\Eav\Setup\EavSetup->updateAttribute(Sentity Typeld, Sid, Sfield, Svalue = null,
SsortOrder = null). However, if addAttribute is called and the attribute already exists,
then updateAttribute method will be called automatically.

Therefore, if you apply addAttribute method, there is no difference between adding a
new attribute and modifying the existing one.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 6: Developing with Adminhtml

6.1 Describe common
structure/architecture

Describe the difference between Adminhtml and
frontend. What additional tools and requirements
exist in the admin?

Adminhtml and frontend are areas. Frontend displays the website to a user, while
adminhtml is the website admin panel, aimed at those who manage it. In adminhtml,
you can create / modify / delete objects and categories, manage orders and customers,
configure the website, etc.

To log in to the admin panel, you need to know its basic URL (for example,
https://www.website.com/admin_1pf3534g/) and then pass authentication.

Controller actions and blocks in adminhtml are located in the Adminhtml subfolder of
Controller and Block folders respectively.

Controller actions and blocks in adminhtml inherit the classes, different from those
inherited by actions and blocks in frontend.

In adminhtml:

Block inherits Magento\Backend\Block\Template

Action inherits Magento\Backend\App\AbstractAction

In frontend:

Block inherits Magento\Framework\View\Element\Template

Action inherits Magento\Framework\App\Action\Action

Ul Components
Adminhtml components in the module view folder can contain an additional

ui_component directory. The directory contains Ul Components that speed up and
simplify development, as well as minimize code duplicates. Ul Components are also

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://www.website.com/admin_1pf3534g/
http://www.belvg.com/
mailto:contact@belvg.com

used in the out-of-the-box frontend in Checkout, but Ul Components configuration is
written in layout xml files, not in ui components xml files.

ui component file name matches the ui component name (except for the .xml suffix),
that can be added into layout using the following instructions:

<uiComponent name="notification_area"
aclResource="Magento_AdminNotification::show_list"/>

v Bu view
¥ B adminhtml
> Im layout

> Bm templates
¥ Im ui_component
notification_area.xmil

» Bm web

Ui_component folder contains one or several XML declarations for grids or forms.

Standard Ul components come in two types:
e Basic
e Secondary

Basic components include form elements and listings.

template
sortOrder

On the screenshot, you can see .xml file for template definition. It contains a link to the
listing basic component connection, aimed at displaying grids, lists and fragments.
Sorting, search and dividing into pages is added to the built-in functions, which are very
helpful for new components and modules development.

Below is the list of extensions for the basic components listing:

e Filters
e Pagination

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Tabs

Buttons and their functional load
Tables

Multiselectors

Loaders

Editors

Headings

These are secondary components that serve as additional elements for expanding the
basic components. Using them is not obligatory, but it is a good practice for a
developer, for they will:

e Create a unified and clear interface

e Simplify and speed up the development process

e Create a simple and intellectually clear environment for support and expansion.

Ul_Components enhances development, support and Magento interface expansion,
allowing the components to work independently and with no loss to operation speed.

To connect Ui components to your module, located in the admin part of the interface,

Magento uses a specialized xml file:
<module_dir>/view/adminhtml/ui_component/<ui_component_name>.xml.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

app
§ code
| Aheadworks
Il Giftcard

b o

I Controller
Cron
i etc
i18n
Model
B Observer
| Plugin
Pricing
B Setup
Test

P
| 3
»>
| 3
|2
>
>
>
| 2
| 2
| 3
| 2
v

= view
adminhtmi
I layout
emplates
v B ui_component
aw_giftcard_giftcard_form.xml
aw_giftcard_history_listing.xml
aw_giftcard_listing.xml
aw_giftcard_pool_code_listing.xml
gifteard_pool_form.xmi
2B aw_giftcard_pool_li g.xml
| aw_giftcard_produc

Then, depending on Magento version (we use Magento 2.2 for demonstration), we set
up the necessary components in xml configuration:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Configuration file has access to ListingToolbar component, introduced Magento 2.1
version. It is located in the area of Magento_Ui/grid names and is related to listing
classes components. Listing Toolbar contains a number of additional components,
configured directly in configuration file.

For example, Bookmark is responsible for displaying and saving the positions of all
current elements, forms and buttons states in the component. It also accounts for
saving and comparing information through the database, directly in ui_bookmark table.

Columns Control is responsible for displaying and hiding active list columns.

Filters component receives the information about the required secondary elements; in
this case, it is an element of select form.

o o o

Used Amount Email Template Website

from Select... - Caskers

- Common purpose (Default)

New Order
Visibility X SKU
Shipment Confirmation
Select... -
New PO Vendor Notification

Send product to a Friend
New Member Registration
Forgot Password

Actions - 2 records found
Office Form - Customer

Office Form - Caskers Admin

Visibility Thumbnail | Produy Purchased Qty Used Qty Purchased Am|

Remind Password
2199 Enabled Catalog. Search - Casksf 1 i $139.99

Using <argument name="class”> attribute, we rewrite the standard element class into
the one we need.

Using <argument name="data"><item name ="name”> attribute, we set the available
parameters at the selection list.

All components contain information about the current state and receive users’ values.

For example, Columns Control receives the parameters on the minimal or maximal
number of the displayed columns.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Afterward, XML configuration files are united into a single one, then into json and are
passed into the client like this. Each configuration file of a single ui component, that
includes the set parameters in a parent XML, overrides them as new ones.

As you can see, Ul components library is the main instrument for the Mangento admin
area, and a considerable part of the store's admin panel is built with it:

Gift Card Products Q 0 L
GiftCard Produts Magento_Ui/js/grid/listing/listingtoolbar
Websits Clear all
Magento_Ui/js/form/components/fieldset
D Purchased Qty 4_/ Used Qty Purchased Amount

Used Amount Email Template Website status

Magento_Ui/js/form/element/abstract

Visibility Product Name SKU Type
A, AT cancel [N
Magento_Ui/js/grid/listing e
Magento_Ui/js/grid/toolbar ————->

PurchasedQty | UsedQty | PurchasedAmount | Used Amount | Email Template(s)

Obtaining Ul components skills allows to significantly speed up development and
expansion of Magento store interface, as well as to unify its structure for creating a
more intuitive area for further support and development.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

6.2 Define form and grid widgets

Define form structure, form templates, grids, grid
containers, and elements. What steps are needed to
display a grid or form?

Form

Contains modified fields of a certain entity. To create a form, you need to:

1.

4.

Grid

Create form xml file of ui component configuration:
<module_dir>/view/<area>/ui_component/<ui_component_name>.xml

Create DataProvider class in the module and define this class in XML
configuration file of Ul component.

Add a set of fields (the Fieldset component with the component of the Field) for
entity or to implement the upload of meta info in the DataProvide

Add Ul component in layout: <uiComponent name="<ui_component_name>"/>

Contains the list of entities, filters, bookmarks, paging, columns controls. Allows to
search entity, modify list sorting, hide and add columns, change their order. To create a
grid, you need to:

1.

w

Create listing xml file of Ul component configuration:
<module_dir>/view/<area>/ui_component/<ui_component_name>.xml|

Set DataSource

Ad(d filter, columns, toolbar, ...

Add ui component into layout: <uiComponent name="<ui_component_name>"/>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe the grid and form workflow. How is data
provided to the grid or form?

At the server:

1. Layout loads Ul component

2. XML files of Ul component are searched in each enabled module
(<module_dir>/view/<area>/ui_component/<ui_component_name>.xml)

All found files of Ul components are merged in a single configuration object
4. Configuration and definition.xml are merged. Objects from definition.xml have
lower priority than single configuration object, received in the previous step
5. The received configuration is transformed into JSON and embedded into the

page with Magento\Ui\TemplateEngine\XhtmI\Result class

w

As aresult, we get the following code:

<script type="text/x-magento-init">

{
Il*ll:{
"Magento_Ui/js/core/app":{
"types":{ ... },
"components":{ ... }
}
}
}
</script>

At the client side:
1. RequireJS loads Magento_Ui/js/core/app and passes configuration as a

parameter
2. Magento_Ui/js/core/app calls Magento_Ui/js/core/renderer/layout and passes it

the configuration
3. layout.js creates instances of Ul components and applies the configuration to it
4. HTML template rendering with knockout.js and binding of the component to the
template is performed

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

The data for grid and form is loaded with the help of DataProvider. The difference lies in
the moment of information upload.

For the form component, the data of an entity are passed inside the current page’s html
code in the <script type = "text / x-magento-init"> ... </script> tag.

For the grid component, the data is loaded through an additional ajax request for the
controller action mui / index / render, processed by the \ Magento \ Ui \ Controller \
Adminhtml \ Index \ Render class for adminhtml area and \ Magento \ Ui \ Controller \
Index \ Render for frontend area .

How can this process be customized or extended?

You can change the form data the following ways:
1. Create a custom DataProvider and specify it in xml file of Ul component.
2. Create a plugin for DataProvider::getData() method
3. Create Modifier class and set it in di.xml, if this DataProvider support Modifiers
(for example, like
\Magento\Catalog\Ui\DataProvider\Product\Form\ProductDataProvider)

"Describe how to create a simple form and grid for a
custom entity. Given a specific entity with different
types of fields (text, dropdown, image, file, date,
and so on) how would you create a grid and a
form?"

Let us consider the examine of a form. It includes text, textarea, select, multiselect,
image. The data is loaded via the Vendor\Module\Model\MyEntity\DataProvider class.

<?xml version="1.0" ?>
<form xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Ui:etc/ui_configuration.x
sd">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="data" xsi:type="array">
<item name="js_config" xsi:type="array">
<item name="provider"
xsi:type="string">my_form.my_entity form_data_source</item>
<item name="deps"
xsi:type="string">my_form.my_entity form_data_source</item>
</item>
<item name="label" translate="true" xsi:type="string">General
Information</item>
<item name="config" xsi:type="array">
<item name="dataScope" xsi:type="string">data</item>
<item name="namespace" xsi:type="string">my_form</item>
</item>
<item name="template" xsi:type="string">templates/form/collapsible</item>
<item name="buttons" xsi:type="array">
<item name="back"
xsi:type="string">Vendor\Module\Block\Adminhtml\MyEntity\Edit\BackButton</item>
<item name="delete"
xsi:type="string">Vendor\Module\Block\Adminhtml\MyEntity\Edit\DeleteButton</item>
<item name="save"
xsi:type="string">Vendor\Module\Block\Adminhtml\MyEntity\Edit\SaveButton</item>
<item name="save_and_continue"
xsi:type="string">Vendor\Module\Block\Adminhtml\MyEntity\Edit\SaveAndContinueButton
</item>
</item>
</argument>
<dataSource name="my_entity form_data_source">
<argument name="dataProvider" xsi:type="configurableObject">
<argument name="class"
xsi:type="string">Vendor\Module\Model\MyEntity\DataProvider</argument>
<argument name="name"
xsi:type="string">my_entity_ form_data_source</argument>
<argument name="primaryFieldName" xsi:type="string">id</argument>
<argument name="requestFieldName" xsi:type="string">id</argument>
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="submit_url" path="*/*/save" xsi:type="url"/>
</item>
</argument>
</argument>
<argument name="data" xsi:type="array">
<item name="js_config" xsi:type="array">
<item name="component"
xsi:type="string">Magento_Ui/js/form/provider</item>
</item>
</argument>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</dataSource>
<fieldset name="General">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="label" xsi:type="string"/>
</item>
</argument>

<field name="name">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="dataType" xsi:type="string">text</item>
<item name="label" translate="true"
xsi:type="string">Name</item>
<item name="formElement" xsi:type="string">input</item>
<item name="source" xsi:type="string">MyEntity</item>
<item name="sortOrder" xsi:type="number">50</item>
<item name="validation" xsi:type="array">
<item name="required-entry" xsi:type="boolean">true</item>
</item>
</item>
</argument>
</field>

<field name="about">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="dataType" xsi:type="string">text</item>
<item name="label" translate="true"
xsi:type="string">About</item>
<item name="formElement" xsi:type="string">textarea</item>
<item name="source" xsi:type="string">MyEntity</item>
<item name="sortOrder" xsi:type="number">65</item>
</item>
</argument>
</field>

<field name="country_ id">
<argument name="data" xsi:type="array">
<item name="options"
xsi:type="object">Magento\Directory\Model\Config\Source\Country</item>
<item name="config" xsi:type="array">
<item name="dataType" xsi:type="string">text</item>
<item name="label" xsi:type="string"
translate="true">Country</item>
<item name="formElement" xsi:type="string">select</item>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<item name="source" xsi:type="string">MyEntity</item>
<item name="sortOrder" xsi:type="number">70</item>
<item name="component"
xsi:type="string">Magento_Ui/js/form/element/country</item>
<item name="validation" xsi:type="array">
<item name="required-entry" xsi:type="boolean">true</item>
</item>
</item>
</argument>
</field>

<field name="region_ids">
<argument name="data" xsi:type="array">
<item name="options"
xsi:type="object">Magento\Directory\Model\ResourceModel\Region\Collection</item>
<item name="config" xsi:type="array">
<item name="dataType" xsi:type="string">int</item>
<item name="dataScope" xsi:type="string">region_ids</item>
<item name="label" xsi:type="string"
translate="true">States</item>
<item name="formElement" xsi:type="string">multiselect</item>
<item name="source" xsi:type="string">MyEntity</item>
<item name="sortOrder" xsi:type="number">80</item>
<item name="validation" xsi:type="array">
<item name="required-entry" xsi:type="boolean">true</item>
</item>
<item name="filterBy" xsi:type="array">
<item name="target" xsi:type="string">
<! [CDATA[${ $.provider }:${ $.parentScope
}.country_id]]></item>
<item name="field" xsi:type="string">country_id</item>
</item>
</item>
</argument>
</field>

<field name="image">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="label" xsi:type="string">Image</item>
<item name="visible" xsi:type="boolean">true</item>
<item name="source" xsi:type="string">MyEntity</item>
<item name="formElement" xsi:type="string">fileUploader</item>
<item name="elementTmpl"
xsi:type="string">ui/form/element/uploader/uploader</item>
<item name="previewTmpl"

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

xsi:type="string">Caskers_MyEntity/image-preview</item>
<item name="sortOrder" xsi:type="number">90</item>
<item name="uploaderConfig" xsi:type="array">
<item name="url" xsi:type="url"
path="vendor_module/upload/image"/>
</item>
</item>
</argument>
</field>
</fieldset>
</form>

Result:

NeW Ent|ty Q ﬂ l admin v

€ Back Save and Continue Edit m

CATALOG

Name #* | Text

About Textarea

Country * | United States v

States * | Alabama
Alaska
Arizona
Arkansas
California

Colorado

Image Upload

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Let us consider the grid. As DataProvider,
Magento\Framework\View\Element\UiComponent\DataProvider\DataProvider is used.
The collection for grid is set in di.xml:

<?xml version="1.0" ?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”

xsi:noNamespaceSchemalLocation="urn:magento:framework:0bjectManager/etc/config.xsd">

<type
name="Magento\Framework\View\Element\UiComponent\DataProvider\CollectionFactory">
<arguments>
<argument name="collections" xsi:type="array">
<item name="my_listing grid data_source" xsi:type="string">
Vendor\Module\Model\ResourceModel\MyEntity\Grid\Collection
</item>
</argument>
</arguments>
</type>

<virtualType name="Vendor\Module\Model\ResourceModel\MyEntity\Grid\Collection"
type="Magento\Framework\View\Element\UiComponent\DataProvider\SearchResult">
<arguments>
<argument name="mainTable"
xsi:type="string">vendor_my_entity</argument>
<argument name="resourceModel"
xsi:type="string">Vendor\Module\Model\ResourceModel\MyEntity\Collection</argument>
</arguments>
</virtualType>
</config>

Ul component GRID file:

<?xml version="1.0" ?>
<listing xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="urn:magento:module:Magento Ui:etc/ui_configuration.x
sd">
<argument name="context" xsi:type="configurableObject">
<argument name="class"
xsi:type="string">Magento\Framework\View\Element\UiComponent\Context</argument>
<argument name="namespace" xsi:type="string">my_listing index</argument>
</argument>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="data" xsi:type="array">
<item name="js_config" xsi:type="array">
<item name="provider"
xsi:type="string">my_listing_index.my_listing grid_data_source</item>
<item name="deps"
xsi:type="string">my_listing index.my_listing grid_data_source</item>
</item>
<item name="spinner" xsi:type="string">my_listing columns</item>
<item name="buttons" xsi:type="array">
<item name="add" xsi:type="array">
<item name="name" xsi:type="string">add</item>
<item name="label" translate="true" xsi:type="string">Add new

Entity</item>
<item name="class" xsi:type="string">primary</item>
<item name="url" xsi:type="string">*/*/new</item>
</item>
</item>
</argument>

<dataSource name="my_listing grid data_source">
<argument name="dataProvider" xsi:type="configurableObject">
<argument name="class" xsi:type="string">

Magento\Framework\View\Element\UiComponent\DataProvider\DataProvider
</argument>
<argument name="name"
xsi:type="string">my_ listing grid_data_source</argument>
<argument name="primaryFieldName" xsi:type="string">id</argument>
<argument name="requestFieldName" xsi:type="string">id</argument>
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="component"
xsi:type="string">Magento_Ui/js/grid/provider</item>
<item name="update_url" path="mui/index/render"
xsi:type="url"/>
<item name="storageConfig" xsi:type="array">
<item name="indexField" xsi:type="string">id</item>
</item>
</item>
</argument>
</argument>
</dataSource>
<listingToolbar name="listing top">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="sticky" xsi:type="boolean">true</item>
</item>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</argument>
<bookmark name="bookmarks"/>
<columnsControls name="columns_controls"/>
<filters name="listing filters"/>
<paging name="listing paging"/>
</listingToolbar>
<columns name="my listing columns">
<selectionsColumn name="ids">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="indexField" xsi:type="string">id</item>
</item>
</argument>
</selectionsColumn>
<column name="name">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="filter" xsi:type="string">text</item>
<item name="sorting" xsi:type="string">asc</item>
<item name="label" translate="true"
xsi:type="string">Name</item>
</item>
</argument>
</column>
<actionsColumn
class="Vendor\Module\Ui\Component\Listing\Column\MyEntityActions" name="actions">
<argument name="data" xsi:type="array">
<item name="config" xsi:type="array">
<item name="indexField" xsi:type="string">id</item>
</item>
</argument>
</actionsColumn>
</columns>
</listing>

Result:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Entlty Q ﬂ l admin

¥ Filters G DefaultView ~ -# Columns

Cancel Apply Filters

2 records found 20 v | per page 1 of 1

BE3 | Name L | Action

Test1 Select «

Test2 Select »

6.3 Define system configuration XML and
configuration scope

Define basic terms and elements of system
configuration XML, including scopes. How would
you add a new system configuration option?

Magento 2 allows to extend the system configuration with modules and integrate the
custom module configuration into the Magento 2 system menu.

To add such custom configurations, use <module_dir>/etc/adminhtml/system.xml file.

<?xml version="1.0"?>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Config:etc/system_file.xs
d">
<system>
<tab id="custom_tab" translate="label" sortOrder="100">
<label>Custom Tab</label>
</tab>
<section id="custom_section” translate="label" type="text" sortOrder="100"
showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Config Section</label>
<tab>custom_tab</tab>
<group id="general" translate="label" type="text" sortOrder="10"
showInDefault="1" showInWebsite="1" showInStore="1">
<label>General</label>
<field id="yesno_dropdown" translate="label" type="select" sortOrder="10"
showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Yes/No Dropdown</label>
<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>
</field>
<field id="custom_dropdown" translate="label" type="select"
sortOrder="10" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Dropdown with custom source model example</label>

<source_model>Vendor\Module\Model\Config\Source\Custom</source_model>
</field>
<field id="custom_text" translate="label" type="text"
sortOrder="20" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Text</label>
</field>
<field id="1logo" translate="label" type="image" sortOrder="30"
showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Image</label>

<backend_model>Magento\Config\Model\Config\Backend\Image</backend_model>
<upload_dir config="system/filesystem/media"
scope_info="1">logo</upload_dir>
<base_url type="media" scope_info="1">logo</base_url>
<comment><![CDATA[Allowed file types: jpeg, gif,
png.]]></comment>
</field>
<field id="depends_example" translate="label" type="text"
sortOrder="40" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Dependant text field example with validation</label>
<depends>
<field id="*/*/custom_dropdown">1</field>
</depends>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<validate>validate-no-empty</validate>
</field>
<field id="custom_textarea" translate="label" type="textarea’
sortOrder="50" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Textarea</label>
</field>
<field id="custom_secret" type="obscure" translate="label"
sortOrder="70" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Secret Field</label>

<backend_model>Magento\Config\Model\Config\Backend\Encrypted</backend_model>
</field>
</group>
</section>
</system>
</config>

Now let us examine the code details:

<tab id="custom_tab" translate="label"” sortOrder="100">
<label>Custom Tab</label>
</tab>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

This xml code allows to add a new line into Magento 2 configuration menu

Configuration

Store View: Default Config v (7]
CENERAE it 5 Country Options Group
General Section State Options
Design FTTCTTCOTT
£ State is Required for | Andorra
Angola
Contacts Anguilla
Antarctica
Antigua an
Reports Argentina
Armenia
Aruba
Content Management ia
hey Relickeponting Allow to Choose State if It is Optional for Country | Yes
CATALOG
Locale Options
CUSTOMERS ~
Store Information
SALES ~
Single-Store Mode

<section id="custom_section" translate="label" type="text"
sortOrder="100" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Config Section</label>
<tab>custom_tab</tab>

</section>

This code adds a new section and assigns it to custom_tab tab. Here, we can use any

tab from the existing ones.
showlInDefault="1", showInWebsite="1" and showInStore="1" parameters set the scope

where our section will be displayed.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Setting Default Value

To set default value for any of the custom settings, create a
<module_dir>/etc/config.xml file.

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Store:etc/c
onfig.xsd">
<default>
<custom_section>
<general>
<yesno_dropdown>1</enable>
<custom_text>Test Value</display text>
</general>
</helloworld>
</default>
</config>

What is the difference in this process for different
option types (secret, file)?

Simple Text Field

<field id="custom_text" translate="label" type="text" sortOrder="20"
showInDefault="1" showInWebsite="1" showInStore="1">

<label>Custom Text</label>
</field>

Yes/No Dropdown

<field id="yesno _dropdown" translate="label" type="select"
sortOrder="10" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Yes/No Dropdown</label>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>
</field>

Dropdown With The Custom Source model

<field id="custom_dropdown" translate="label" type="select"
sortOrder="10" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Dropdown with custom source model example</label>

<source_model>Vendor\Module\Model\Config\Source\Custom</source_model>
</field>

And our custom model can look like this:
<module_dir>/Model/Config/Source/Custom.php

<?php
namespace Vendor\Model\Model\Config\Source;
class Custom implements \Magento\Framework\Option\ArrayInterface

{

/**
* @return array
*/
public function toOptionArray()
{
return [
['value' => @, 'label' => _ ('Zero')],
['value' => 1, 'label' => _ ('One')],
['value' => 2, '"label' => ('Two')],
1
}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

File Upload

<field id="logo" translate="label" type="image" sortOrder="30"
showInDefault="1" showInWebsite="1" showInStore="1">

<label>Custom Image</label>
<backend_model>Magento\Config\Model\Config\Backend\Image</backend_mod
el>

<upload_dir config="system/filesystem/media"
scope_info="1">logo</upload_dir>

<base_url type="media" scope_info="1">logo</base_url>
<comment><![CDATA[Allowed file types: jpeg, gif, png.]]></comment>
</field>

Dependent Field

<field id="depends _example" translate="label" type="text"
sortOrder="40" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Dependant text field example with validation</label>

<depends>
<field id="*/*/yesno_dropdown">1</field>
</depends>
<validate>validate-no-empty</validate>
</field>

<validate>validate-no-empty</validate> validates that the field is not empty
when the configuration is saved.

depends tag allows to display this field only if at yesno_dropdown the Yes value was
selected.

Textarea

<field id="custom_textarea" translate="label" type="textarea"
sortOrder="50" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Textarea</label>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</field>

Secret Field

<field id="custom_secret" type="obscure" translate="label"
sortOrder="70" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Custom Secret Field</label>

<backend_model>Magento\Config\Model\Config\Backend\Encrypted</backend
_model>
</field>

type="obscure” hides field's value from the frontend, but the information from it will still
be saved as plain text. Setting Magento\Config\Model\Config\Backend\Encrypted as a
backend model allows to encrypt the data in the database.

Most of the source models are located in
app/code/Magento/Config/Model/Config/Source and backend models are located in
app/code/Magento/Config/Model/Config/Backend.

Describe system configuration data retrieval. How
do you access system configuration options
programmatically?

To access system configuration options programmatically, create a class. Inside it,
create a method for obtaining the value of the needed configuration and determine the
constant that contains the path to the configuration value. Example:

<module_dir>/Helper/Config.php
<?php
namespace BelVG\Test\Helper;

use Magento\Framework\App\Helper\AbstractHelper;
use Magento\Store\Model\ScopeInterface;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

class Config extends AbstractHelper

{
const XML_PATH_TEST_VALUE = 'belvg/settings/test value';
/**
* @return string
*/
public function getTestValue()
{

return (string)
$this->scopeConfig->getValue(self: :XML_PATH_TEST_VALUE,
ScopeInterface: :SCOPE_STORE);

}

If your configuration values are encrypted and stored in the database, set
backend_model in etc/config.xml file so that scopeConfig->getValue would return the
decrypted configuration values. Example:

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Store:etc/c
onfig.xsd">
<default>
<belvg>
<settings>
<test_value
backend model="Magento\Config\Model\Config\Backend\Encrypted"/>
</settings>
</belvg>
</default>
</config>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

6.4 Utilize ACL to set menu items and
permissions

Describe how to set up a menu item and
permissions. How would you add a new menu item
in a given tab?

Magento 2 allows to customize and add new points to backend menu.
To add new menu, use the following file
<module_dir>/etc/adminhtml/menu.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Backend:etc
/menu.xsd">

<menu>

<add id="Vendor_Module::second_level" title="Second Level

Menu" module="Vendor Module" sortOrder="10"
action="Vendor_Module/action_path"
resource="Magento_Backend::content”
parent="Magento Backend: :system_design
1"/>

</menu>
</config>

where
e id-record identifier; should be unique. {Vendor_Module}::{menu_description}.

o title - displayed title
e module - sets the module that module item belongs to in Vendor_Module format.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e sortOrder - sets the position of a menu item. The options with smaller values will
be displayed higher.
parent - id of other menu item. Defines the menu as embedded.
action - url pages, which the menu item refers to.
resource - sets ACL rule, necessary for viewing a certain menu item.

How would you add a new tab in the Admin menu?

The process of adding a new tab is similar to adding a new item, but the item,
responsible for a new tab, does not contain a parent item.

<module_dir>/etc/adminhtml/menu.xml
<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_ Backend:etc
/menu.xsd">
<menu>
<add id="Vendor_ Module::first level" title="First Level Menu"
module="Vendor_Module" sortOrder="51"
resource="Magento_Backend: :content"/>
<add id="Vendor_Module::second_level" title="Second Level
Menu" module="Vendor Module" sortOrder="10"
action="Vendor_Module/action_path"
resource="Magento_ Backend: :content"
parent="Vendor_Module::first_level”/>
</menu>
</config>

How do menu items relate to ACL permissions?

To restrict access to a certain menu item with a certain ACL rule, insert it in the resource
parameter during the menu configuration:

<module_dir>/etc/adminhtml/menu.xml

<?xml version="1.0"?>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Backend:etc
/menu.xsd">
<menu>
<add id="Vendor_Module::first_level" title="First Level Menu"
module="Vendor_Module" sortOrder="51"
resource="Vendor_Module::acll"/>
<add id="Vendor_Module::second_level" title="SEcond Level
Menu" module="Vendor_Module" sortOrder="10"
action="Vendor_Module/action_path" resource="Vendor Module::acl2"
parent="Vendor_Module::first_ level"/>
</menu>
</config>

Describe how to check for permissions in the
permissions management tree structures. How
would you add a new user with a given set of
permissions?

Magento 2 allows to separate the Admin Users permissions and create admin users
groups with a variety of permissions.

Defining ACL

Use <module_dir>/etc/acl.xml file to create a new ACL rule.

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Acl/etc/acl.xsd"
>
<acl>
<resources>
<resource id="Magento_Backend::admin">

<resource id="Vendor_ Module::acll" title="ACL Parent

Rule" sortOrder="51">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<resource id="Vendor_Module::acl2" title="ACL
Child Rule" sortOrder="10"/>

</resource>
</resource>
</resources>
</acl>
</config>
where,

e id-resource identifier. Applied in menu and actions configuration for identifying
the resource. It should be unique and set in the following format:
Vendor_Module::resource_name.
title - resource title
sortOrder - resource order in resource tree

System section > Permissions > User Roles contains all the available roles and their
permissions.

System section > Permissions > All Users allows to create new users or modify the
current users, as well as assign user roles.

How can you do that programmatically?

To restrict permissions to actions with ACL, override _isAllowed method or
ADMIN_RESOURCE constant in the class of this action.

protected function _isAllowed()
{

return $this-> authorization->isAllowed('Vendor Module::acl2');

}

or
const ADMIN_RESOURCE = 'Vendor_ Module::acl2';

To create user role, use classes Magento\Authorization\Model\RoleFactory and
Magento\Authorization\Model\RulesFactory

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$role = $this->roleFactory->create();
$role->setParentId(9)
->setTreelLevel(1)
->setSortOrder(1)
->setRoleType(Group: :ROLE_TYPE)
->setUserId(0)
->setUserType(UserContextInterface: :USER_TYPE_ADMIN)
->setRoleName('Example Administrator');
$role->save();
/** @var \Magento\Authorization\Model\Rules $rule */
$rule = $this->rulesFactory->create();
$rule->setRoleId($role->getId())
->setResourceld($this->rootResource->getId())
->setPrivilegies(null)
->setPermission(‘allow');
$rule->save();

To create a user, create a class Magento\User\Model\UserFactory:

$adminUser = $this->userFactory->create();
$adminUser->setRoleId(ROLE_ID)
->setEmail('admin' . $i . '@example.com")
->setFirstName('Firstname")
->setLastName('Lastname")
->setUserName('admin' . $i)
->setPassword('123123q")
->setIsActive(1)
->save();

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section /: Customizing the Catalog

7.1 Demonstrate ability to use products
and product types

Identify/describe standard product types (simple,
configurable, bundled, etc.). How would you obtain
a product of a specific type?

In the out-of-the-box Magento 2 Community Edition, there are six product types:

1. Simple Product. This is a basic and the most popular product type. A single
simple product corresponds to a single physically existing product to a unique
SKU (Store Keeping Unit).

Fusion Backpack

- 3 Reviews Add Your Review

$59'00 IN STOCK

SKU#: 24-MBO02

Qty

1

Add to Cart

W ADD TO WISH LIST o1 ADD TO COMPARE =4 EMAIL

Simple Product

2. Virtual Product. This product type is for the products that do not exist physically.
Paid subscriptions, services, insurances, etc. are examples of Virtual products.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

BelVG Support

Be the first to review this product

$1 000 00 IN STOCK
I " SKU#: BelVG Support
Qty
1
P CBELVG
—_— Add to Cart
FOR SUCCESSFUL
e E-COMMERCE
W ADD TO WISH LIST 1 ADD TO COMPARE B EMAIL
BelVG provides all kinds of ecommerce support services. Our team of
certified developers deals with technical issues so that you can focus on
your customers and run your business smoothly.
BelvG Support

Virtual Product

Configurable Product. The type allows to create products with a list of options,
for example, for example, a T-shirt in different colors and sizes. Each product
option of such configurable product corresponds to a single Simple Product with
a unique SKU, allowing the retailer to keep track of each product option stock
balance.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Layla Tee

*7 2 Reviews Add Your Review

As low as IN STOCK

$29.00 SKU# W504

Size
X5 5 M L XL

Color

Qty
;

Add to Cart

W ADD TO WISH LIST s ADD TO COMPARE B4 EMAIL

e

Configurable Product

. Grouped Product. This product type allows to group single Simple or Virtual
Products into bundles. Therefore, the customer can buy all the needed items at
once, without adding them to the cart separately. Moreover, the customer gets to
decide which products from the bundle he wants to purchase and in what
amount. The products he or she selected are added to the cart separately.

www.belvg.com Phone: +1 650353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Set of Sprite Yoga Straps

Be the first to review this product

IN STOCK
SKU#: 24-WG0B5_Group

Product Name Qty
Sprite Yoga Strap 6 foot 0
$14.00

Sprite Yoga Strap 8 foot 0
$17.00

Sprite Yoga Strap 10 foot 0
$21.00

Add to Cart

W ADD TO WISH LIST Is ADD TO COMPARE = EMAIL

Grouped Product

5. Bundle Product. This product type allows customers to create a bundle at their
wish, using a set of options (for example, a yoga kit).

Sprite Yoga Companion Kit

Be the first to review this product

From IN STOCK
SKU#: 24-WGO8B0

$61.00

To

$77.00

Customize and Add to Cart

@ ADD TO WISH LIST «ls ADD TO COMPARE = EMAIL

Bundle Product

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Each option is a Simple Product or a Virtual Product. Before adding a bundle product to
the cart, a customer must customize it with the provided options. The final price will
depend on the chosen configuration.

Customize Sprite Yoga
Companion Kit

Go back to product details

Your Customization

Qr
Sprite Stasis Ball * Y

Sprite Stasis Ball 55 cm +$23.00 1
Sprite Stasis Ball 65 cm + $27.00

Sprite Stasis Ball 75 cm + $32.00 Add to Cart

Quantity

1

$61.00

Summary

Sprite Foam Yoga Brick *
Sprite Foam Yoga Erick + $5.00

Quantity Sprite Stasis Ball:

1 1 x Sprite Stasis Ball 55 cm

Sprite Foam Yoga Brick:

1 x Sprite Foam Yoga Brick
Sprite Yoga Strap *

® Sprite Yoga Strap & foot +$14.00 Sprite Yoga Strap:
1 x Sprite Yoga Strap 6 foot
Sprite Yoga Strap 8 foot + $17.00

Sprite Yoga Strap 10 foot + $21.00 Sprite Foam Roller:
1 x Sprite Foam Roller

Quantity

1

Sprite Foam Roller *

Bundle Product parameters

SKU and Weight attributes can be fixed or dynamic. The price for Bundle Product can be
set as Price Range (from minimum to maximum) or As Low As (the lowest price
possible). The admin can set how the products will be delivered - together or separately.
6. Downloadable Product. This product type is aimed at digital products that can
consist of one or several files, downloaded by the customer after the purchase is
made.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Yoga Adventure

Be the first to review this product
IN STOCK
$22'00 SKU#: 240-1LV06

Trailers

O uma

Fitness Studic

YOGA

Adventure

Trailer #1
Trailer #2

Trailer #3

The practices on this downloadable training video are recommended only
for experienced to advanced students. Those with the fundamental skills
needed won't want to miss the insight and advice from world-renowned
trainer Erin Renny in these exclusive Luma guided yoga sessions. Complete
body, arm balance and leg strength workouts engage, strengthen and
increase mobility.

INCLUDES A BREAKDOWN
OF 12 DIFFERENT POSTURES.

Image

Downloads $22. 00

Yoga Adventure
Add to Cart

Downloadable Product

Virtual and Downloadable Products weight nothing, which means there is no need to
deliver them and no need to select a delivery option at the checkout. Also, Virtual and
Downloadable Products do not have In Stock attribute.

To get all products of a certain type, use the
Magento\Catalog\Model\ResourceModel\Product\Collection:
Scollection->addFieldToFilter(‘type_id', 'bundle’); class.

As the second parameter, pass the product type name: bundle, configurable,
downloadable, grouped, simple or virtual.

What tools (in general) does a product type model
provide?

Basic methods, available for different product types:

- getSetAttributes -returns product attributes set;
- getAttributeById - returns attribute based on its ID and product ID;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

- isVvirtual - determines if the product is virtual;

- 1isSalable - determines if the product is Salable;

- isComposite - determines if the product is composite;

- canConfigure - determines if the product is configurable;

- prepareForCart - initializes the product for adding to cart;

- checkProductBuyState - checks if it is possible to buy the product;
- getSku - returns product SKU that has or does not have options;
- hasOptions - checks if the product has options;

- hasWeight - checks if the product has weight;

- getRelationInfo - returns product relations information;

- getAssociatedProducts - returns associated products;

- getChildrenlIds - returns the list of child products’ IDs;

- getParentIdsByChild - returns the list of parent products’ IDs;
- assignProductToOption - assigns options to a product.

What additional functionality is available for each of
the different product types?

Configurable:
- getConfigurableAttributes - gets the attributes, used for subproducts;
- getUsedProductIds - gets id subproducts;
- getProductByAttributes - gets products by their attribute values;
- getConfigurableOptions - gets options list;
- setImageFromChildProduct - sets the image of a child product for a parent
product, if it was not set previously.

Bundle:

- getOptions - gets the list of options;

- getSelectionsCollection - gets the selections collection by their id;

- getSpecifyOptionMessage - gets the customer message with the request to
specify options;

- checkIsAllRequiredOptions - checks whether all the required options are
selected;

- checkSelectionsIsSale - checks if all the options are available for sale.

Downloadable:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

- getLinks - checks the links for downloading the product;

- hasLinks - checks if all the downloadable products have links;

- getLinkSelectionRequired - checks if the product can be bought without the
selected links;

- getSamples - gets the downloadable product samples;

- hasSamples - checks if the product has samples for downloading.

It is worth mentioning that getRelationInfo, getAssociatedProducts, getChildrenids,
getParentldsByChild, etc. methods return empty arrays, even though they are shared by
all product types, not only compound ones, like Simple and Virtual. The logic of these
methods is realized in the compound types’ classes, taking into account this type’s
specifics.

7.2 Describe price functionality

Identify the basic concepts of price generation in
Magento.

As arule, each product in Magento 2 can have several prices: regular, special, final, etc.
Each price type has a class, accountable for calculating the final value of a certain price
type. Some price types are available for all the products, while others are specific to a
certain product type.

Let us examine the basic price types, available for all product types:

- base_price - product price at the default exchange rate;

- regular_price -product price at the chosen exchange rate;

- final price - final product price;

- special price - product price with a discount;

- tier_price - product price depending on the number of products in the cart and
customer group;

- custom_option_price - if the product has options, option price can be displayed
in percentage (except for configurable products);

- configured_price - product price together with options;

- catalog rule price - product price after catalog rules are applied.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Basic classes, accountable for different price types realization, are located in
Magento\Catalog\Pricing\Price names area and extend the
Magento\Framework\Pricing\Price\AbstractPrice class. Different product types, as a
rule, override the calculation logic for various price types. In this case, the
corresponding classes are located in the names area of the corresponding product
types. Also, several product types add custom price types:

- downloadable products:
- 1link_price - price when the product is downloaded from the link
provided;
- bundle products:
- bundle_option - price of bundle product option.

Each price type has getValue() and getAmount() methods. getValue() method returns
the price value, while getAmount() method returns the final price with all the taxes
added.

How would you identify what is composing the final
price of the product?

final_price depends on the product type.

For simple and virtual product types, final_price corresponds to the minimal
regular_price, catalog_rule_price, special_price, tier_price values.

For configurable products, the price of each option is selected as a minimal value from
base_price, tier_price, index_price, catalog_rule_price.

At the same time, when choosing the minimum price, the status of the configurable
product option, its availability for a particular site and availability in stock are checked.
After determining the final_price of all options, the final price of the configurable
product is determined, which will be equal to the lowest cost of its options.

final_price of grouped product equals the minimal final_prices of all the products from
the group.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

For bundle products, the price is calculated in the same way as for simple products +
bundle_option - the cost of all required options multiplied by their number.

How can you customize the price calculation
process?

There are several ways to customize the price calculation process:

1.

Create a new price type and add it to the basic price set. For this, create a
custom module with the class that will realize
Magento\Framework\Pricing\Price\BasePriceProviderinterface interface
Magento\Framework\Pricing\Price\BasePriceProviderinterface and expand
Magento\Framework\Pricing\Price\AbstractPrice class; also, add the necessary
instructions in the module’s di-file:

<virtualType name="MyVendor\MyModule\Pricing\Price\Pool"
type="Magento\Framework\Pricing\Price\Pool">
<arguments>
<argument name="prices" xsi:type="array">
<item name="my_ price"
xsi:type="string">MyVendor\MyModule\Pricing\Price\MyPrice</item
>
</argument>
<argument name="target"
xsi:type="object">Magento\Catalog\Pricing\Price\Pool</argument>
</arguments>
</virtualType>

Create a plugin for the class methods of that price type, the calculation process
of which you need to modify; for example, around getValue() method.

Override the class, corresponding to the required price type, for a certain product
type by using di-file in your module:

<virtualType name="MyVendor\MyModule\Pricing\Price\Pool"
type="Magento\Framework\Pricing\Price\Pool">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<arguments>
<argument name="prices" xsi:type="array">
<item name="regular price"
xsi:type="string">MyVendor\MyModule\Pricing\Price\MyRegularPric
e</item>
</argument>
</arguments>
</virtualType>

4. Completely override the price class using the preference instruction in di-file of
the module.

Describe how price is rendered in Magento.

Let us examine how the price is rendered, using the process of final_price formatting
and display. Magento\Catalog\Pricing\Render\FinalPriceBox class is accountable for
the price display. Magento_Catalog::product/price/final_price.phtml is the template
used for displaying the block content. In case the product has a special price, by calling
the renderAmount() block method, you can display both old and new price. Otherwise,
only the final, lowest price is displayed. Then, if the product has options (for example,
size), the block with the lowest price option is displayed.

How would you render price in a given place on the
page, and how would you modify how the price is
rendered?

To render price in a given place, add you layout block of the
Magento\Catalog\Pricing\Render class by passing price_type_code parameter as an
argument.

<block class="Magento\Catalog\Pricing\Render"
name="product.price.myprice">
<arguments>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="price_render"
xsi:type="string">product.price.render.default</argument>
<argument name="price_type_code"
xsi:type="string">final_price</argument>
<argument name="zone" xsi:type="string">item_view</argument>
</arguments>
</block>

Using data-arguments, you can modify the price box, amount renders and adjustment
renders, by modifying their css-classes, id_suffix, id_prefix, etc.

To modify price display template, create a custom catalog_product_prices.xml. There,
you can modify render.product.prices block by passing the name of class, block and
your template as parameters for the required price type.

<layout xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
layout generic.xsd">
<referenceBlock name="render.product.prices">
<arguments>
<argument name="myprice" xsi:type="array">
<item name="prices" xsi:type="array">
<item name="final price" xsi:type="array">
<item name="render_class"
xsi:type="string">MyVendor\MyModule\Pricing\Render\FinalPriceBox</ite
m>
<item name="render_template"
xsi:type="string">MyVendor_MyModule: :product/price/final_price.phtml<
/item>
</item>
</item>
</argument>
</arguments>
</referenceBlock>
</layout>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

7.3 Demonstrate ability to use and
customize categories

Describe category properties and features.

Magento 2 categories were created to conveniently group products according to their
types and bundles, as well as to enhance products display. The categories are also used
for building top menu. Categories have their own settings, and to modify them, navigate
to Catalog -> Categories page and select a category for editing.

(7] Delete m

Display Settings
Search Engine Optimization
Products in Category

Design

B “

Below are the major settings:
Enable Category - enables and disables category display at the frontend.
Include in Menu - determines whether the category is included in the top menu.

The next tab is Display Settings

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

[SEITTRSITTY

Display Settings

Display Mode ‘ Products only | . ‘

Anchor q Yes

v| Use All
~| Use Config Settings

¥| Use Config Settings

Display mode - allows to switch the category display mode. There are three modes
available:
1. Products only - only category / product description will be displayed.
2. Static block only - only description and static block, selected in Tab Content
above, will be displayed; the products will not.
3. Static block and Products - both static and products blocks will be displayed.

Anchor - sets the display of the layered navigation in the given category.
The settings from Search Engine Optimization and Products in Category tabs are rather
intuitive. The first allows to add meta descriptions to the categories, while the second

allows to add the products, displayed in the given category.

Tabs Design and Schedule Design Update

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Design

Use Parent Category Settings No
Theme - Please Select - | =

Layout No layout updates

Layout Update XML

Apply Design to Products No

Schedule Design Update

Schedule Update From To

With Use Parent Category Settings, you can set whether the parent category theme will
be applied; you can also choose which theme or layout will be applied for the given
category (Theme and Layout settings).

Layout Update Xml is aimed at adding xml instructions via the admin interface.
Schedule Update From - sets the period, during which the altered Design settings will
apply to the category.

How do you create and manage categories?

To create a category, navigate to Catalog -> Categories

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

ave been reset because of a change to their xml configs.

Catalog

B 2)

Products

Categorles

]

G Enable C._a_rgg?_r): (Yes

]
L)
Include in Menu ‘ Yes

re view]

-
Category Name + | Default Category
[store view]

Content

Display Settings

Crhnarrh Enmina Mntimizatinn

Select the category type - either Root Category or Subcategory.

A\ One or more integrations have been reset because of a change to their xml configs.
Default Category (ID: 2)

Store View: All Store Views e

” Add Root Category
N

CATALOG Add Subcategory sl catfgow (e

L

Collapse All | Expand All Include in

=1 Default Category (1181) [st
[55 what's New (0)

- @ Women (0)

T @] Men (0)

@[Gear (45)

@[Training (6)

menu @) ves

or

Category Name * | Default Category

Content

D@

[iSaIE(O}

[Z Website category (0) Display Settings

Chazvrlh Camina Mntimizatian

Add Root Category button creates a new category in the categories tree root. All the
root categories are further used for the multistore settings.
Add Subcategory button creates a subcategory inside the active category.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe the category hierarchy tree structure
implementation (the internal structure inside the
database). What is the meaning of parent_id 0? How
are paths constructed?

Magento 2 categories are presented in the form of a tree and can have any nesting.

Collapse All | Expand All
1|+ Default Category (2046)
What's New (0)
() Women (0)
=115, Men (0)
= [Bottoms (148)
| Shorts (148)
7 Pants (156)
Gear (46)
Bags (14)
 Fitness Equipment (23)
| Watches (994)
=54 Collections (13)
MNew Luma Yoga Collection (347)
| Eco Friendly (247)
| Erin Recommends (279)
Performance Fabrics (310)
Performance Sportswear New (0)
Eco Collection New (0)

7 Training (6)
| Video Download (6)
| Sale (@)

To realize category tree in Magento, the following logic is used. The picture below
demonstrates the catalog_category_entity table structure, where the information about
categories structure is stored.

Column . Type [comment
| entity_id | int{10) unsigned Auto Increment | Entity ID
|attribute_set_id | smallint(5) unsigned [0] | Attriute Set ID
| parent_id .: int(10) uﬁéigned [0] . | Parent Category iD| —
| created_at timestamp [CU-RRE.I;I‘.l'_.fI.MES.TAMP] Creation Time |
|updated_at | tmestamp [CURRENT_TIMESTAMP] | Update Time
| path . .varchar(255) [Tree Path :.(—
| position [int(11) | Position '
[tevel . |nt(11) [0] [Tree Level
| children_count | int(11) | child Count

The main columns are accountable for category structure:

entity id-the category ID.
parent_id - parent category ID.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

path - path to the category in the categories tree. This is a record with a path to a
category in the category tree. Represents a record in the form of a sequential
arrangement of entity_id categories, separated by a slash (/).

Modify | entity_id | attribute_set_id | parent id created_at updated at | path | position | level | children count
il i 3 6 2018-07-31 17:08:16 | 2018-10-04 06:45:10 | 1/2/3/6/7 | 1 4 7

The construction of the category tree begins with an entry with the parent_id = 0 value.
This entry has a value of entity_id = 1. Categories whose parent_id = 1 act as Root
Categories. And then the construction of the category tree is implemented through the
connection parent_id <—> entity_id.

SELECT * FROM ‘catalog categery entity’ ORDER BY "parent id’ LIMIT 50 Edit

Modify empz attribute_set_id | parent j created_at updated_at path position | level | children_count
edit |1 3 0 2018-07-31 17:08:05 | 2018-10-04 07:04:21 | 1 [0 0 42

edit |2 % 1 2018-07-31 17:08:05 | 2018-10-04 06:45:10 | 112 |1 |1 |39

edit |43 Ta 1 | 2018-10-04 07:04:21 | 2016-10-04 07:04:21 | 1/43 [a [1 o

edit |42 3 1 2018-10-04 07:02:47 | 2018-10-04 07:03:38 | 1142 |2 1 o

edit |3 [3 IB 2018-07-31 17:08:16 | 2018-10-04 06:45:10 | L2/3 [4 [z |u

—~ -'lﬂ "‘2 -‘)] IMQN7_ M 171044 | IM N7 211 171044 [19120 ”1 "‘) mn

Collapse All | Expand Al
Default Category (2046)
Mew Root Category (0)
Root Category 2 (0)

Which attribute values are required to display a new
category in the store?

When creating a category, the only required value is Category name. Based on this
name, the URL Key is automatically generated, which is the path by which the category
will be displayed in the browser.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Add Root Category

What kind of strategies can you suggest for
organizing products into categories?

In most cases, the strategy for organizing products into categories depends on the
particular business that will be presented at the webshop.

One of the organizing products alternatives is to categorize products according to the
set of attributes or attribute sets used. Therefore, the products that have the same set
of additional attributes will be categorized. This will allow you to get a more intuitive
product filter (layered navigation). For example, in a filter for bicycles there will be no
size options, etc. Further, the separation of products can be made based on the
attributes’ values and customers target group (children, adults, men, women).

But in most cases, the marketing department of the company decides on the products
structure and organization.

7.4 Determine and manage catalog rules

Identify how to implement catalog price rules. When
would you use catalog price rules?

Catalog price rules would be used to set a discount, depending on conditions, for a
product or product group. To create them in the admin panel, navigate to Marketing -
Catalog Price Rule. Here, the administrator can specify the conditions, under which

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

catalog price rules can be applied to products, actions to be performed, and other
parameters.

How do they impact performance?

The impact on page loading is relatively small, since all price calculations occur during
reindex. The speed of reindex is affected by: the number of catalog rules, customer
groups, products and websites affected. In the worst case, if all catalog price rules
affect all customer groups, products and websites, then the number of rows in the
catalogrule_product table will be CATALOG_RULES_QTY * CUSTOMER_GROUPS_QTY *
PRODUCTS_QTY * WEBSITES_QTY. The catalogrule_product_price table contains 3
times more rows than the catalogrule_product table.

Let us examine one configuration example:

We have one catalog rule that applies to 4 customer groups, one website and 247
products. In this case, the number of lines in the tables will be the following:
catalogrule_product: 1 *4 * 1 * 247 = 988

Catalogrule_product_price: 988 * 3 = 2964.

Another example:

We have 5 catalog rules, each applies to 4 customer groups, 5 websites and 2000
products. Then, the number of lines will be the following:

catalogrule_product: 5* 4 * 5* 2000 = 200000

catalogrule_product_price: 200000 * 3 = 600000.

Now, we will examine the reason why the influence on the page upload is relatively
insignificant. Let us turn to Magento code.

In vendor\magento\module-catalog-rule\etc\frontend\events.xml file, set the observer
for catalog_product_get_final_price event.

https://i.imgur.com/XuicwTk.png

<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Event/etc/events
.xsd">
<event name="catalog product_get final price">
<observer name="catalogrule"
instance="Magento\CatalogRule\Observer\ProcessFrontFinalPriceObserver

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://i.imgur.com/XuicwTk.png
http://www.belvg.com/
mailto:contact@belvg.com

N

</event>

<event name="prepare_catalog product collection prices">

<observer name="catalogrule"

instance="Magento\CatalogRule\Observer\PrepareCatalogProductCollectio
nPricesObserver" />

</event>
</config>

Then, in magento\module-catalog-rule\Observer\ProcessFrontFinalPriceObserver.php
file, we get the price and assign it to the product.
https://i.imgur.com/Tx3gb7L.png

public function execute(\Magento\Framework\Event\Observer $observer)
{

$product = $observer->getEvent()->getProduct();

$pId = $product->getId();

$storeld = $product->getStoreld();

if ($observer->hasDate()) {

$date = new \DateTime($observer->getEvent()->getDate());
} else {

$date = $this->localeDate->scopeDate($storeld);

if ($observer->hasWebsiteId()) {
$wId = $observer->getEvent()->getWebsiteId();
} else {
$wid
$this->storeManager->getStore($storeld)->getWebsiteId();
}

if ($observer->hasCustomerGroupId()) {

$gId = $observer->getEvent()->getCustomerGroupId();
} elseif ($product->hasCustomerGroupId()) {

$gId = $product->getCustomerGroupId();
} else {

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://i.imgur.com/Tx3qb7L.png
http://www.belvg.com/
mailto:contact@belvg.com

$gId = $this->customerSession->getCustomerGroupId();

}

$key = "{$date->format('Y-m-d H:i:s')}|{$wId}|{$gIid}|{$pId}";
if (!$this->rulePricesStorage->hasRulePrice($key)) {
$rulePrice =
$this->resourceRuleFactory->create()->getRulePrice($date, $wId, $gId,
$pId);
$this->rulePricesStorage->setRulePrice($key, $rulePrice);
}
if ($this->rulePricesStorage->getRulePrice($key) !== false) {
$finalPrice = min($product->getData('final price'),
$this->rulePricesStorage->getRulePrice($key));
$product->setFinalPrice($finalPrice);

}

return $this;

Then, let's examine what is happening in getRulePrice() method. Navigate to
vendor\magento\module-catalog-rule\Model\ResourceModel\Rule.php file and find the
method. It will call getRulePrices() method, where the simplest request into the
database to catalogrule_product_price table is performed. This is how we get the price.

https://i.imgur.com/3vfkW4u.png

public function getRulePrice($date, $wId, $gId, $pId)
{

$data = $this->getRulePrices($date, $wId, $gId, [$pId]);
if (isset($data[$pId])) {
return $data[$pId];

return false;

public function getRulePrices(\DateTimeInterface $date, $websiteld,
$customerGroupId, $productIds)

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://i.imgur.com/3vfkW4u.png
http://www.belvg.com/
mailto:contact@belvg.com

$connection = $this->getConnection();

$select = $connection->select()
->from($this->getTable('catalogrule product price'),

["product_id', 'rule_price'])

->where('rule date = ?', $date->format('Y-m-d"))
->where('website _id = ?', $websiteld)
->where('customer group id = ?', $customerGroupId)
->where('product_id IN(?)", $productIds);

return $connection->fetchPairs($select);

How would you debug problems with catalog price
rules?

First, make sure that price rule is active. Navigate to Marketing > promotions > Catalog
Price Rule and make sure that the status is set at active.

The, apply the rules by pressing the corresponding button Apply Rules
https://i.imgur.com/99ZRWIp.png

After that, Catalog Rule Product indexes and Product Price, connected to it, are set as
invalid. https://i.imgur.com/W1N3aBQ.png

In action
vendor\magento\module-catalog-rule\Controller\AdminhtmI\Promo\Catalog\ApplyRule
s.php, a copy of

\Magento\CatalogRule\Model\Rule\Job class is created, in which applyAll() method is
called. https://i.imgur.com/v7FfJK5.png .

public function execute()

{
$errorMessage = __ ('We can\'t apply the rules.');
try {
/** @var Job $rulelob */
$ruledob =

$this-> objectManager->get(\Magento\CatalogRule\Model\Rule\Job::class

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://i.imgur.com/99ZRWIp.png
https://i.imgur.com/W1N3aBQ.png
https://i.imgur.com/v7FfJK5.png
http://www.belvg.com/
mailto:contact@belvg.com

)3
$ruledob->applyAll();

if ($rulelob->hasSuccess()) {
$this->messageManager->addSuccess($ruleJob->getSuccess());

$this->_objectManager->create(\Magento\CatalogRule\Model\Flag: :class)
->loadSelf()->setState(0)->save();
} elseif ($ruledob->hasError()) {
$this->messageManager->addError($errorMessage .
$ruleJob->getError());

}
} catch (\Exception $e) {

$this->_objectManager->create(\Psr\Log\LoggerInterface::class)->criti

cal(%e);
$this->messageManager->addError($errorMessage);

/** @var \Magento\Backend\Model\View\Result\Redirect
$resultRedirect */

$resultRedirect =
$this->resultFactory->create(ResultFactory::TYPE_REDIRECT);

return $resultRedirect->setPath('catalog rule/*");

In this method, the index is set as invalid.
https://i.imgur.com/NX4XsEE.png

public function applyAll()

{

try {
$this->ruleProcessor->markIndexerAsInvalid();

$this->setSuccess(__ ('Updated rules applied.'));
} catch (\Magento\Framework\Exception\LocalizedException $e) {
$this->setError($e->getMessage());

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://i.imgur.com/NX4XsEE.png
http://www.belvg.com/
mailto:contact@belvg.com

return $this;

Then, launch reindex and flush the cache.
bin/magento indexer:reindex
bin/magento cache:flush

After all these actions and if the price rule is configured correctly (if date range and
conditions are both correct), the rules will work.

In case the rules do not work, navigate to catalogrule_product_price table and check the

product price there. If the data is incorrect, try checking the logs, disconnecting
third-party modules or review the Catalog Price Rule reindex process with xDebug.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 8: Customizing the Checkout Process

8.1 Demonstrate ability to use quote, quote
item, address, and shopping cart rules in
checkout

Quote contains data for creating an order. This data is temporary and can be modified
by the user. When the order is created, the user can no longer change this data in it.
Magento uses Quote for the following purposes:

e Store products in the cart along with their cost, quantity and options

e Store selected billing address and shipping address

e Store shipping costs

e Store subtotals of prices, additional prices (shipping costs, taxes, etc.) and

coupons application to determine the total price
e Store selected payment method

The following tables are aimed at storing Quote in the database:
quote

quote_address

quote_address_item

quote_id_mask

quote_item

quote_item_option

quote_payment

quote_shipping_rate

Quote is the responsibility of the Magento\Quote\Model\Quote model. The
Magento\Quote\Model\Quote\Address model is responsible for Quote Address. Quote
usually has 2 addresses (billing, shipping), but may contain more if there are several
delivery addresses or none at all. If quote does not have an address, then Totals will not
take into account Price Rules associated with the country. If the quote contains virtual
products only, then the delivery address is not taken into account and checked using the

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

isVirtual () method of the Magento/Quote \ Model \ Quote class for quote with virtual
products, only the billing address is taken into account. For products in quote, the
Magento\Quote\Model\Quote\ltem model is responsible. For payment in quote, the
Magento\Quote\Model\Quote\Payment model is responsible.

Rules in checkout

With Cart Price Rules, we can modify the final price at the checkout and the shipping
costs. It is also possible to configure rules via the admin panel. There is a flexible set of
conditions, under which the rules apply. We can add a coupon for applying the discount
and indicate its percentage. Also, we can apply a discount or include free shipping to
the cart that meets certain conditions. We can see all the settings in the Marketing->
Cart Price Rules-> Add New Rule section. As conditions, we can apply:

Product attribute combination
Products subselection
Conditions combination
Subtotal

Total Items Quantity
Total Weight

Payment Method
Shipping Method
Shipping Postcode
Shipping Region
Shipping State/Province
Shipping Country

The “Magento \ SalesRule \ Model \ Rule” model is responsible for the cart rules, and
with it we can programmatically add or get a specific cart rule.

The more there are cart rules without coupons for the current website and for the

current customer group, the slower is the processing of cart rules. It is not
recommended to have a lot of such cart rules.

Interesting quote fields or methods:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

If the “trigger_recollect” flag is set, the “quote” will also be updated when the price
changes or the product is set to “disabled” status. The same happens if we change the
rules of the CatalogRules catalog, for we can find these methods in the class Magento \
Quote \ Model \ ResourceModel markQuotesRecollectOnCatalogRules () and
markQuotesRecollect ().

Quote is also extendable through Magento \ Framework \ Model \
AbstractExtensibleModel, for it supports "extension_attributes". You can register the
extension through the extension_attributes.xml file:

<extension_attributes for="Magento\Quote\Api\Data\CartInterface">
<attribute code="shipping_assignments"
type="Magento\Quote\Api\Data\ShippingAssignmentinterface[]" />
</extension_attributes>
Use “Quote Repository Plugin” to fill in the values with the afterLoad (), beforeSave (), or
whenever () functions. Quote does not use “custom_attributes” since they are not EAVs.

Quote address custom attributes:

e “CE" \Magento\Quote\Model\Quote\Address\CustomAttributeList
getAttributes() return empty array. To implement it, we need to write a plugin.

o “EE”
\Magento\CustomerCustomAttributes\Model\Quote\Address\CustomAttributeLi
st::getAttributes return “customer address attributes” + “customer attributes”

Quote item useful methods:

e Magento\Quote\Model\Quote\ltem checkData() is called after adding to cart and
updating options
o Magento\Quote\Model\Quote\ltem setQty() - triggers stock validation
o Magento\Catalog\Model\Product\Type\AbstractType
checkProductBuyState() - check if the product can be bought
Magento\Quote\Model\Quote\ltem setCustomPrice()
Magento\Quote\Model\Quote\ltem getCalculationPrice() gets original custom
price applied before tax calculation
e Magento\Quote\Model\Quote\ltem isChildrenCalculated() checks if there are
children calculated or parent item when we have parent quote item and its
children

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Magento\Quote\Model\Quote\ltem isShipSeparately() - Checking if we can ship
products separately (each child separately) or each parent product item can be
shipped only like one item
Magento\Quote\Model\Quote\ltem\Compare::compare merges items and adds
quantity instead of a new item

Magento\Quote\Model\Quote\ltem representProduct() - compares quote item
with some new product, checks product id and custom options
Magento\Quote\Model\Quote\ltem compareOptions() - check if two options
array are identical. First options array is prerogative, and second options array
checked compared to the first one.

Describe how to modify these models and
effectively use them in customizations.

Inventory validation

Use Magento\Quote\Model\Quote\ltem setQty() function to declare quote item
quantity

Use event "sales_quote_item_qgty_set_after"

Use function
\Magento\Cataloglnventory\Model\Quote\ltem\QuantityValidator::validate to
check product inventory data when quote item quantity declaring.

Add to cart

Use function Magento\Quote\Model\Quote addProduct() to add a product to the
shopping cart Returns error message if product type instance can't prepare
product.

Use function Magento\Catalog\Model\Product\Type\AbstractType
prepareForCartAdvanced() to initialize product(s) to add to cart process. The
advanced version of function that prepares product for cart (processMode) can
be specified there.

Use function Magento\Quote\Model\Quote\ltem\Processor::prepare to set
quantity and custom price for quote item

Use event "sales_quote_product_add_after"

Use event "sales_quote_save_after", "sales_quote_save_before"

Use event "checkout_cart_add_product_complete"

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Cart update

e Use function \Magento\Quote\Model\Quote updateltemUpdate() quote item
information

e Use event "sales_quote_save_after", "sales_quote_save_before"

Describe how to customize the process of adding a
product to the cart.

e Applying a plugin to the Magento\Catalog\Model\Product\Type\AbstractType
prepareForCartAdvanced() method. This function is used to prepare the product
for adding to the cart (that is, the “Quote” object) and is called from the Magento
\ Quote \ Model \ Quote addProduct () method.

e Applying a plugin to the Magento\Quote\Model\Quote::addProduct method
Applying a plugin to the Magento\Quote\Model\Quote::addltem method
With the help of "catalog_product_type_prepare_full_options" event at the
condition of full validation, or "catalog_product_type_prepare_lite_options" at the
condition of partial validation, the event is launched right before the product with
configurable options is configured into “Quote” element.

e Applying a plugin to the \Magento\Quote\Model\Quote\ltem\Processor::prepare
method, we can modify the number of products and their custom prices.

e With the help of "sales_quote_product_add_after" event, we can modify attribute
values or product price.

Using the “sales_quote_add_item” event.

In thecatalog_attributes.xml file in <group name="quote_item"> group, we
describe the product attributes that get into “quote”; for example, <attribute
name="sku"/>.

Which different scenarios should you take into
account?

Adding into the shopping cart from the catalog

Adding into the shopping cart from the wishlist

Adding all items from the wishlist into the shopping cart
Create an order from the admin / user part of the website
“Reorder” from the admin / user part of the website

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e Configuration of the added product is modification of custom options
e “Quotes” merge at the client authorization in case he or she added products as a
guest and already have a “Quote”

8.2 Demonstrate ability to use totals
models

Describe how to modify the price calculation
process in the shopping cart. How can you add a
custom totals model or modify existing totals
models?

Custom totals can be used to add an additional tax or discount in Magento Checkout or
modify the existing ones.

First, we need to create the <module_dir>/etc/sales.xml file in our module. This file is
applied for registration of all the available Magento totals.

<module_dir>/etc/sales.xml:
<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Sales:etc/s
ales.xsd">
<section name="quote">
<group name="totals">
<item name="custom total"
instance="Vendor\Module\Model\Totals\Custom" sort_order="500"/>
</group>
</section>
</config>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Here, we set \Vendor\Module\Model\Totals\Custom class as our custom total model.
This class should inherit \Magento\Quote\Model\Quote\Address\Total\AbstractTotal
and realize collect and fetch methods.

Here, we set \Vendor\Module\Model\Totals\Custom class as the model of our custom
total. This class should inherit
\Magento\Quote\Model\Quote\Address\Total\AbstractTotal and realize methods
collect and fetch. Collect method is applied to calculate our total, while fetch method
returns the value together with total's code and its name.

Also, \Magento\Quote\Model\Quote\Address\Total Stotal parameter allows you to
affect the result of the other total classes. But, depending on the task, it may be
reasonable to use plugins to modify their values.

<module_dir>/Model/Total/Custom.php

<?php
Namespace Vendor\Module\Model\Total;

class Custom extends
\Magento\Quote\Model\Quote\Address\Total\AbstractTotal
{
/**
* Custom constructor.
*/
public function _ construct()

{
$this->setCode('custom_total');

/**
* @param \Magento\Quote\Model\Quote $quote
* @param \Magento\Quote\Api\Data\ShippingAssignmentInterface
$shippingAssignment
* @param \Magento\Quote\Model\Quote\Address\Total $total
* @return $this
*/
public function collect(
\Magento\Quote\Model\Quote $quote,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\Quote\Api\Data\ShippingAssignmentInterface
$shippingAssignment,
\Magento\Quote\Model\Quote\Address\Total $total

) o
parent::collect($quote, $shippingAssignment, $total);

$items = $shippingAssignment->getItems();
if (!count($items)) {
return $this;

//we will add an additional amount of 150 to the order as an
example
$amount = 150;

$total->setTotalAmount('custom total', $amount);

$total->setBaseTotalAmount('custom total', $amount);

$total->setCustomAmount ($amount);

$total->setBaseCustomAmount ($amount);

$total->setGrandTotal($total->getGrandTotal() + $amount);

$total->setBaseGrandTotal($total->getBaseGrandTotal() +
$amount);

return $this;

/**
* @param \Magento\Quote\Model\Quote\Address\Total $total
*/
protected function
clearValues(\Magento\Quote\Model\Quote\Address\Total $total)
{
$total->setTotalAmount('subtotal’, 9);
$total->setBaseTotalAmount('subtotal’, 0);
$total->setTotalAmount('tax', @);
$total->setBaseTotalAmount('tax', 9);
$total->setTotalAmount('discount tax_compensation', 0);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$total->setBaseTotalAmount('discount tax compensation', 0);
$total->setTotalAmount('shipping discount_tax_compensation’,

9);

$total->setBaseTotalAmount('shipping discount tax compensation', 0);
$total->setSubtotalInclTax(9);
$total->setBaseSubtotalInclTax(9);

/**
* @param \Magento\Quote\Model\Quote $quote
* @param \Magento\Quote\Model\Quote\Address\Total $total
* @return array
*/
public function fetch(
\Magento\Quote\Model\Quote $quote,
\Magento\Quote\Model\Quote\Address\Total $total

) {
return [
‘code' => $this->getCode(),
"title' => 'Custom Total',
'value' => 150
1;
}
/**
* @return \Magento\Framework\Phrase
*/
public function getlLabel()
{
return __ ('Custom Total');
}

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Displaying Custom Total

Cart and checkout pages

We use knockout.js to display our totals. Therefore, to make our total appear at the cart
and checkout pages, we need to add a new JS component into checkout_cart_index.xml
and checkout_index_index.xml layouts.

<module_dir>/view/frontend/layout/checkout_cart_index.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/page_configura
tion.xsd">
<body>
<referenceBlock name="checkout.cart.totals">
<arguments>
<argument name="jslLayout" xsi:type="array">
<item name="components" xsi:type="array">
<item name="block-totals" xsi:type="array">
<item name="children" xsi:type="array">
<item name="custom_total" xsi:type="array">
<item name="component"
xsi:type="string">Vendor_Module/js/view/checkout/cart/totals/custom_total</item>
<item name="sortOrder"
xsi:type="string">20</item>
<item name="config" xsi:type="array">
<item name="template"
xsi:type="string">Vendor_Module/checkout/cart/totals/custom_total</item>
<item name="title" xsi:type="string">Custom
Total</item>
</item>
</item>
</item>
</item>
</item>
</argument>
</arguments>
</referenceBlock>
</body>
</page>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<module_dir>/view/frontend/layout/checkout_index_index.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" layout="1column"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/page configura
tion.xsd">
<body>
<referenceBlock name="checkout.root">
<arguments>
<argument name="jslLayout" xsi:type="array">
<item name="components" xsi:type="array">
<item name="checkout" xsi:type="array">
<item name="children" xsi:type="array">
<item name="sidebar" xsi:type="array">
<item name="children" xsi:type="array">
<item name="summary" xsi:type="array">
<item name="children" xsi:type="array">
<item name="totals"
xsi:type="array">
<item name="children"
xsi:type="array">
<item name="custom_total"
xsi:type="array">
<item name="component"
xsi:type="string">Vendor_Module/js/view/checkout/cart/totals/custom_total</item>
<item name="sortOrder"
xsi:type="string">20</item>
<item name="config"
xsi:type="array">
<item
name="template"
xsi:type="string">Vendor_Module/checkout/cart/totals/custom_total</item>
<item name="title"
xsi:type="string">Custom Total</item>
</item>
</item>
</item>
</item>
<item name="cart_items"
xsi:type="array">
<item name="children"
xsi:type="array">
<item name="details"
xsi:type="array">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<item name="children"
xsi:type="array">
<item
name="subtotal" xsi:type="array">
<item
name="component"
xsi:type="string">Magento_Tax/js/view/checkout/summary/item/details/subtotal</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</item>
</argument>
</arguments>
</referenceBlock>
</body>
</page>

We can also create the components themselves, together with HTML templates:

<module_dir>/view/frontend/web/js/view/checkout/cart/totals/custom_total.js

define(
[

'"Vendor_Module/js/view/checkout/summary/custom_total'

1,
function (Component) {
'use strict';

return Component.extend({
/**

* @override

*/

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

isDisplayed: function () {
return this.getPureValue() !== 0;

1)
)5

<module_dir>/view/frontend/web/template/checkout/cart/totals/custom_total.html

<!-- ko if: isDisplayed() -->
<tr class="totals custom_total excl">

<th class="mark" colspan="1" scope="row" data-bind="text:
title"></th>
<td class="amount">
<span class="price"
</td>
</tr>

<!-- /ko —

data-bind="text: getValue()">

<module_dir>/view/frontend/web/js/view/checkout/summary/custom_total.js

define(
[
‘Magento_Checkout/js/view/summary/abstract-total"’,
'Magento_Checkout/js/model/quote’,
'Magento_Catalog/js/price-utils’,
'Magento_Checkout/js/model/totals"
1,

function (Component, quote, priceUtils, totals) {
"use strict";
return Component.extend({
defaults: {
isFullTaxSummaryDisplayed:
window.checkoutConfig.isFullTaxSummaryDisplayed || false,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

template:
'Vendor_Module/checkout/summary/custom_total’
}.’
totals: quote.getTotals(),
isTaxDisplayedInGrandTotal:
window.checkoutConfig.includeTaxInGrandTotal || false,

isDisplayed: function() {
return this.isFullMode() && this.getPureValue() !==

0;
}.’
getValue: function() {
var price = 0;
if (this.totals()) {
price = totals.getSegment('custom total').value;
}
return this.getFormattedPrice(price);
}.’
getPureValue: function() {
var price = 0;
if (this.totals()) {
price = totals.getSegment('custom_total').value;
¥
return price;
}
1)
)i
)

getValue and getPureValue methods return the values of our custom total, but getValue
method formats the value, adding two decimal digits and the actual currency symbol.

<module_dir>/view/frontend/web/template/checkout/summary/custom_total.html

<!-- ko if: isDisplayed() -->
<tr class="totals custom total excl">

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<th class="mark" scope="row">

</th>
<td class="amount">
<span class="price" data-bind="text: getValue(), attr:
{'data-th': title}">
</td>
</tr>
<!-- /ko -->

Order Emails

To add a new total display into order email, add a new block in sales_email_order_items
layout.

<module_dir>/view/frontend/layout/sales_email_order_items.xml

<?xml version="1.0" encoding="UTF-8"?>
<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">
<body>
<referenceBlock name="order_totals">
<block class="Vendor\Module\Block\Order\CustomTotal"
name="order.totals.custom" />
</referenceBlock>
</body>
</page>

<module_dir>/Block/Order/CustomTotal.php

<?php

namespace Vendor\Module\Block\Order;

class CustomTotal extends
\Magento\Framework\View\Element\AbstractBlock

{

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function initTotals()
{
$orderTotalsBlock = $this->getParentBlock();
$order = $orderTotalsBlock->getOrder();
if ($order->getCustomAmount() > @) {
$orderTotalsBlock->addTotal(new
\Magento\Framework\DataObject ([

'code’ => 'custom_total’,
‘label"’ => _ ('Custom Total'),
'value' => $order->getCustomAmount(),

'base_value' => $order->getCustomBaseAmount(),
1), 'subtotal');

8.3 Demonstrate ability to customize the
shopping cart

Describe how to implement shopping cart rules.
What is the difference between sales rules and
catalog rules?

Cart rules in Magento 2 is a system to set discounts and promotions. Compared to
catalog rules, cart rules are applied to the current user’s shopping cart, not to each
separate product; they may also require that a certain coupon code is entered to get
them. Due to this, the discounts are not visible at the catalog pages, but still allow to
apply different factors for getting them, like the number of products in the customer’s
shopping cart, their total price, the categories they belong to, and much more.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Creating cart rules

Commonly, cart rules are created from the admin panel, but they can also be created
programmatically.

Catalog Price Rule

Cart Price Rules

Email Templates
e Newsletter Template
MARKETING

Newsletter Queue

Mewsletter Subscribers

Log in to the admin panel and navigate to Marketing -> Cart Price Rules. Press “Add
New Rule” button and select the rule name, relationship with store and customer
groups, conditions for discount and the coupon relevance.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Creating new cart rule programmatically

To create a shipping cart rule programmatically, you have to inject
\Magento\SalesRule\Model\RuleFactory class:

<?php

protected $ruleFactory

public function __ construct(
\Magento\SalesRule\Model\RuleFactory $ruleFactory
) 1

$this->rulesFactory = $ruleFactory

And then use it like this:

<?php

$ruleData = [
"name" => "Custom Cart Rule",
"description” => "Buy some products and get one more
free",
"from_date" => null,
"to_date" => null,
"uses_per_customer" => "0",
"is active" => "1",
"stop_rules_processing" => "@",
"is _advanced" => "1",
"product_ids" => null,
"sort_order" => "0",
"simple_action" => "buy x_get y",
"discount_amount" => "1.0000",
"discount_qty" = >null,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

"discount_step" => "3",
"apply_to_shipping" => "o",
"times _used" => "0",

"is rss" => "1",

"coupon_type" => "NO_COUPON",
"use_auto_generation" => "0",
"uses_per_coupon" => "@",
"simple_free_shipping" => "@",
"customer_group_ids" => [0, 1, 2, 3],
"website_ids" => [1],
"coupon_code" => null,
"store_labels" => [],
"conditions_serialized" => "',
"actions_serialized" => ''

15

$ruleModel = $this->ruleFactory->create();
$ruleModel->setData($ruleData);
$ruleModel->save();

Creating conditions and actions for the rule

For the sake of demonstration, let us create the condition that sets a discount for a
certain product, if customer has added more than five items of this product.

<?php

protected $ruleFactory
protected $productFoundConditionFactory;
protected $productConditionFactory;

public function _ construct(
\Magento\SalesRule\Model\RuleFactory $ruleFactory,
\Magento\SalesRule\Model\Rule\Condition\Product\FoundFactory
$productFoundConditionFactory,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

\Magento\SalesRule\Model\Rule\Condition\ProductFactory
$productConditionFactory,
) {
$this->rulesFactory = $ruleFactory;
$this->productFoundConditionFactory =
$productFoundConditionFactory;
$this->productConditionFactory = $productConditionFactory;

$discount = '25°';
$sku = "PRODUCT_SKU"' ;

$shoppingCartPriceRule = $this->rulesFactory->create();
$shoppingCartPriceRule->setName('25% off with multiple products -
$sku)

->setDescription('Get 25% off with two or more products)

->setFromDate('2000-01-01")

->setToDate(NULL)

->setUsesPerCustomer('0")

->setCustomerGroupIds(array('e','1','2","'3",))

->setIsActive('1l")

->setStopRulesProcessing('0")

->setIsAdvanced('1")

->setProductIds(NULL)

->setSortOrder('1")

->setSimpleAction('by_ percent')

->setDiscountAmount($discount)

->setDiscountQty(NULL)

->setDiscountStep('0")

->setSimpleFreeShipping('0")

->setApplyToShipping('@")

->setTimesUsed('0")

->setIsRss('0")

->setWebsiteIds(array('1',))

->setCouponType('1')

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

->setCouponCode (NULL)
->setUsesPerCoupon(NULL);

$productFoundCondition =
$this->productFoundConditionFactory->create()
->setType('Magento\SalesRule\Model\Rule\Condition\Product\Found")
->setValue(1) // 1 == FOUND
->setAggregator('all'); // match ALL conditions

$productCondition = $this->productConditionFactory->create()
->setType('Magento\SalesRule\Model\Rule\Condition\Product")
->setAttribute('sku')
->setOperator('==")
->setValue($sku);
$productFoundCondition->addCondition($productCondition);

$shoppingCartPriceRule->getConditions()->addCondition($productFoundCo
ndition);

$skuCondition = $this->productConditionFactory->create()
->setType('Magento\SalesRule\Model\Rule\Condition\Product')
->setAttribute('sku')
->setOperator('==")
->setValue($sku);
$shoppingCartPriceRule->getActions()->addCondition($skuCondition);

$gtyCondition = $this->productConditionFactory->create()
->setType('Magento\SalesRule\Model\Rule\Condition\Product")
->setAttribute('quote_item_qty')
->setOperator('>=")
->setValue('2');
$shoppingCartPriceRule->getActions()->addCondition($qtyCondition);

$shoppingCartPriceRule->save();

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

What are the limitations of the native sales rules
engine? How do sales rules affect performance?

For each customer, there can be only one active coupon. Rules cannot add other
products to the cart and apply to the item they were assigned to

work with.

Cart rules can slow down the process of adding a product to the cart, as well as
checkout and shopping cart pages speed. Performance impact from cart rules can
increase in case there is a large number of cart rules with a wide area of application
(without connection to website or customer group) and without coupons.

Describe add-to-cart logic in different scenarios.
What is the difference in adding a product to the
cart from the product page, from the wishlist, by

clicking Reorder, and during quotes merge?

e Adding from the product page:
Action: \Magento\Checkout\Controller\Cart\Add
Available events: checkout_cart_add_product_complete,
checkout_cart_product_add_after, sales_quote_product_add_After,
sales_quote_add_item
Based on the passed product and proper amount of cart model, the corresponding
quote item is generated.

e Adding from the wishlist:
Action: \Magento\Wishlist\Controller\Index\Cart
Available events: checkout_cart_product_add_after, sales_quote_product_add_after,
sales_quote_add_item

e Reorder:
Action: \Magento\Sales\Controller\AbstractController\Reorder
Available events: checkout_cart_product_add_after, sales_quote_product_add_after,
sales_quote_add_item

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e Quote merge:
Method: \Magento\Quote\Model\Quote::merge
Available events: sales_quote_add_item

Describe the difference in behavior of different
product types in the shopping cart. How are
configurable and bundle products rendered?

Magento 2 uses renderers to display products in the shopping cart. Each product type
(e.g. simple, configurable, bundle) has a renderer; they are registered in the renderer list
with layout instructions as child blocks of the
\Magento\Framework\View\Element\RendererList block under the name
“checkout.cart.item.renderers”.

To the example’s sake, let us examine a renderer for configurable products:

vendor/magento/module-configurable-product/view/frontend/layout/checkout_cart_ite
m_renderers.xml

<?xml version="1.0"?>
<!--
] **

* Copyright (c) Magento, Inc. All rights reserved.

* See COPYING.txt for license details.

*/

-->

<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">

<body>
<referenceBlock name="checkout.cart.item.renderers">
<block
class="Magento\ConfigurableProduct\Block\Cart\Item\Renderer\Configura
ble" as="configurable"
template="Magento_Checkout::cart/item/default.phtml">
<block

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

class="Magento\Checkout\Block\Cart\Item\Renderer\Actions"
name="checkout.cart.item.renderers.configurable.actions"”
as="actions">
<block
class="Magento\Checkout\Block\Cart\Item\Renderer\Actions\Edit"
name="checkout.cart.item.renderers.configurable.actions.edit"”
template="Magento Checkout::cart/item/renderer/actions/edit.phtml"/>
<block
class="Magento\Checkout\Block\Cart\Item\Renderer\Actions\Remove"
name="checkout.cart.item.renderers.configurable.actions.remove"
template="Magento_ Checkout::cart/item/renderer/actions/remove.phtml"/
>
</block>
</block>
</referenceBlock>
</body>
</page>

Where \Magento\ConfigurableProduct\Block\Cart\Item\Renderer\Configurable class is
applied as renderer and contains methods for displaying the child product picture
instead of the parent product picture.

How can you create a custom shopping cart
renderer?

First, we need to create a block, \Vendor\Module\Block\Cart\CustomRenderer for
example, that will be responsible for html content of a product. The product that we
need to display is set in \Magento\Checkout\Block\Cart\AbstractCart::getltemHtml
block.

public function getItemHtml(\Magento\Quote\Model\Quote\Item $item)
{

$renderer =
$this->getItemRenderer($item->getProductType())->setItem($item);
return $renderer->toHtml();

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Therefore, the product will be available in the template of our block by calling Sproduct
= Sblock->getltem();

Also, renderer should be recorded in the list:

<module_dir>/view/frontend/layout/checkout_cart_item_renderers.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:View/Layout/etc/
page_configuration.xsd">
<body>
<referenceBlock name="checkout.cart.item.renderers">
<block class="\Vendor\Module\Block\Cart\CustomRenderer"
as="custom-type"
template="Magento_Checkout::cart/item/default.phtml">
<block
class="Magento\Checkout\Block\Cart\Item\Renderer\Actions"
name="checkout.cart.item.renderers.custom.actions" as="actions">
<block
class="Magento\Checkout\Block\Cart\Item\Renderer\Actions\Edit"
name="checkout.cart.item.renderers.custom.actions.edit"
template="Magento_Checkout::cart/item/renderer/actions/edit.phtml"/>
<block
class="Magento\Checkout\Block\Cart\Item\Renderer\Actions\Remove"
name="checkout.cart.item.renderers.custom.actions.remove"
template="Magento_Checkout::cart/item/renderer/actions/remove.phtml"/
>
</block>
</block>
</referenceBlock>
</body>

</page>

Afterwards, all the “custom-type” type products will use our class for display.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe the available shopping cart operations.
Which operations are available to the customer on
the cart page?

Modify product quantity

Update the cart (required after the quantities are modified)
Modify configurable/bundle product options

Delete the product

Place the product into wishlist (if enabled)

Add / delete the coupon

Go to checkout

Go to multi shipping settings (if enabled)

How can you customize cart edit functionality?

Let checkout/cart/configure call action \Magento\Checkout\Controller\Cart\Configure,
which, in its turn, allows the user to edit the product, already added to the shopping cart.
Depending on your wish to customize, you can modify either the action or the
corresponding layout / templates.

How would you create an extension that deletes one
item if another was deleted?

To create an extension that deletes one item if another was deleted, use observer for
sales_quote_remove_item event.

<module_dir>/etc/events.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Event/etc/events
.xsd">
<event name="sales quote_ remove item">
<observer name="removeCartItem"
instance="Vendor\Module\Observer\RemoveCartItem" />

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

</event>
</config>

<module_dir>/Observer/RemoveCartitem.php

namespace Vendor\Module\Observer;

class RemoveCartItem implements
\Magento\Framework\Event\ObserverInterface

{

public function execute(\Magento\Framework\Event\Observer
$observer)

{
$deletedItem = $observer->getData(' 'quote item');

//We can also check id or sku of the deleted cart item, and
depending on the result, delete the other one.

}
}

How do you add a field to the shipping address?
To add a new field into shipping address, you need to:

1. Add a field into layout.
Because shipping and billing addresses forms are generated dynamically, we can do it
with a plugin for \Magento\Checkout\Block\Checkout\LayoutProcessor::process
method.

2. Create a JS mixin for sending additional information.
We need to modify Magento_Checkout/js/action/set-shipping-information component.

3. Add a new field into address model.

Using extension attributes
/<module_dir>/etc/extension_attributes.xml

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<?xml version="1.0"?>

<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Api/etc/extensio
n_attributes.xsd">

<extension_attributes
for="Magento\Quote\Api\Data\AddressInterface">

<attribute code="custom_field" type="string" />

</extension_attributes>

</config>

4. Get the value at the server side.
Use getExtensionAttributes method of the
Magento\Checkout\Api\Data\ShippingInformationinterface interface.

To learn more, follow the link:
https://devdocs.magento.com/guides/v2.2/howdoi/checkout/checkout_new_field.html

8.4 Demonstrate ability to customize
shipping and payment methods

Describe shipping methods architecture. How can
you create a new shipping method? What is the
relationship between carriers and rates?

Creation of custom shipping method starts with creating system.xml and config.xml
files in our module. The first one defines the options, available for the configuration of a
new shipping method, while the second one sets the default values.

<module_dir>/adminhtml/system.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

https://devdocs.magento.com/guides/v2.2/howdoi/checkout/checkout_new_field.html
http://www.belvg.com/
mailto:contact@belvg.com

xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Config:etc/
system_file.xsd">
<system>
<section id="carriers" translate="label" type="text"
sortOrder="320" showInDefault="1" showInWebsite="1" showInStore="1">
<group id="customshipping" translate="label" type="text"

sortOrder="0" showInDefault="1" showInWebsite="1" showInStore="1">

<label>Custom Shipping</label>

<field id="active" translate="label" type="select"
sortOrder="1" showInDefault="1" showInWebsite="1" showInStore="0">

<label>Enabled</label>

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>
</field>
<field id="title" translate="label" type="text"
sortOrder="2" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Title</label>
</field>
<field id="name" translate="label" type="text"
sortOrder="3" showInDefault="1" showInWebsite="1" showInStore="1">
<label>Method Name</label>
</field>
<field id="price" translate="label" type="text"
sortOrder="5" showInDefault="1" showInWebsite="1" showInStore="0">
<label>Price</label>
<validate>validate-number
validate-zero-or-greater</validate>
</field>
<field id="sort_order" translate="label" type="text"
sortOrder="100" showInDefault="1" showInWebsite="1" showInStore="0">
<label>Sort Order</label>
</field>
<field id="showmethod" translate="label"
type="select" sortOrder="92" showInDefault="1" showInWebsite="1"
showInStore="0">
<label>Show Method if Not Applicable</label>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<source_model>Magento\Config\Model\Config\Source\Yesno</source_model>
</field>
</group>
</section>
</system>
</config>

Required parameters for each shipping method:
e active - shipping method enabled / disabled.
e model - path to shipping method model.
e title - shipping carrier name; the parameter displays at the front end.
e sallowspecific — determines whether the shipping method is available for all
countries, or for the certain ones.
e sort_order - the order of shipping methods display in the list.
We also use several additional configuration parameters:

price;

name;

showmethod — whether the shipping method is displayed even if it can not be
applied to the actual cart / customer.

Config.xml file sets default values for the parameters from system.xml file.

<module_dir>/etc/config.xml
<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:module:Magento_Store:etc/c
onfig.xsd">
<default>
<carriers>
<customshipping>
<active>1</active>

<model>Vendor\Module\Model\Carrier\CustomShipping</model>
<name>Custom Shipping</name>
<price>5.00</price>
<title>Custom Shipping</title>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<sallowspecific>0</sallowspecific>
<sort_order>100</sort_order>
</customshipping>
</carriers>
</default>
</config>

When configuration files are created, we create our shipping method model:

<module_dir>/Model/Carrier/CustomShipping.php
<?php

namespace Vendor\Module\Model\Carrier;

class CustomShipping
extends \Magento\Shipping\Model\Carrier\AbstractCarrier
implements \Magento\Shipping\Model\Carrier\CarrierInterface

/**
* Constant defining shipping code for method
*/

const SHIPPING_CODE = 'customshipping’;

/**
* @var string
*/
protected $ code = self::SHIPPING_CODE;

/x5
* @var \Magento\Shipping\Model\Rate\ResultFactory
*/

protected $rateResultFactory;

/**
* @var
\Magento\Quote\Model\Quote\Address\RateResult\MethodFactory
*/

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

protected $rateMethodFactory;

/**
* @param \Magento\Framework\App\Config\ScopeConfigInterface
$scopeConfig
* @param
\Magento\Quote\Model\Quote\Address\RateResult\ErrorFactory
$rateErrorFactory
* @param \Psr\Log\LoggerInterface $logger
* @param \Magento\Shipping\Model\Rate\ResultFactory
$rateResultFactory
* @param
\Magento\Quote\Model\Quote\Address\RateResult\MethodFactory
$rateMethodFactory
* @param array $data
*/
public function __ construct(
\Magento\Framework\App\Config\ScopeConfigInterface
$scopeConfig,
\Magento\Quote\Model\Quote\Address\RateResult\ErrorFactory
$rateErrorFactory,
\Psr\Log\LoggerInterface $logger,
\Magento\Shipping\Model\Rate\ResultFactory

$rateResultFactory,
\Magento\Quote\Model\Quote\Address\RateResult\MethodFactory
$rateMethodFactory,
array $data = []
) o
$this->rateResultFactory = $rateResultFactory;
$this->rateMethodFactory = $rateMethodFactory;
parent::__construct($scopeConfig, $rateErrorFactory, $logger,
$data);
}
/**
* @return array
*/

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function getAllowedMethods()

{
return [self::SHIPPING_CODE => $this->getConfigData('name"')];

/**
* @param \Magento\Quote\Model\Quote\Address\RateRequest
$request
* @return bool|\Magento\Shipping\Model\Rate\Result
*/
public function
collectRates(\Magento\Quote\Model\Quote\Address\RateRequest
$request)

{
if (!$this->getActiveFlag()) {
return false;

/** @var \Magento\Shipping\Model\Rate\Result $result */
$result = $this->rateResultFactory->create();

/** @var \Magento\Quote\Model\Quote\Address\RateResult\Method
$method */
$method = $this->rateMethodFactory->create();

$method->setCarrier(self: :SHIPPING_CODE);

// Get the title from the configuration, as defined in
system.xml

$method->setCarrierTitle($this->getConfigData('title"'));

$method->setMethod(self: :SHIPPING_CODE);

// Get the title from the configuration, as defined in
system.xml

$method->setMethodTitle($this->getConfigData('name"));

// Get the price from the configuration, as defined in
system.xml

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$amount = $this->getConfigData('price');

$method->setPrice($amount);
$method->setCost($amount);

$result->append($method);

return $result;

Shipping method model should inherit
\Magento\Shipping\Model\Carrier\AbstractCarrier class and realize
\Magento\Shipping\Model\Carrier\CarrierInterface interface; it also should have at
least two methods:
e getAllowedMethods:
o Should return the options array, available for our method (standard or fast
delivery).
e collectRates:
o When returned, false deletes the given shipping method from the list of
available ones.
o Aninstance of \Magento\Shipping\Model\Rate\Result with the list of
available methods.

S_code parameters in this model should contain a unique shipping method code; in our
case, it's “customshipping”.
Sthis->getConfigData method allows to get the configuration values for our method

(based on the available in system.xml file).

Each shipping carrier can contain one or several shipping rates.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Describe how to troubleshoot shipping methods
and rate results. Where do shipping rates come
from? How can you debug the wrong shipping rate
being returned?

collectRates method can be applied to check the availability of the given method for a
certain customer. For instance, if we need to limit the method availability to certain
postcodes only, this check should be performed there.

This method can be used to set up shipping methods. The call is performed in
collectCarrierRates method of the \Magento\Shipping\Model\Shipping class.

Describe how to troubleshoot payment methods.
What are the different payment flows?

In Magento 2, there are three payment method types:

1. Gateway - payment data is passed first into Magento, and then - to the merchant.
To enhance safety, use payment data tokenization.

2. Offline - the payment method that does not provide for the connection with any
third-party payment provider. Examples: Check/Money Order, Bank Transfer,
Purchase Order and Cash on Delivery

3. Hosted - redirects the customer to the payment page that is not a part of
Magento 2.

Each gateway payment method is divided into a different number of commands:
e fetch_transaction_information

order

authorize

Capture

refund

cancel

void

acceptPaymen

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

e denyPaymen

Each command should be realized as a separate class; therefore, payment methods
debugging should begin with the class of the corresponding command.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 9: Sales Operations

9.1 Demonstrate ability to customize sales
operations

Describe how to modify order processing and
integrate it with a third-party ERP system.

To modify the process of order processing, use
plugin(https://belvg.com/blog/designing-complex-solutions-using-plugins-in-magento-2
.html) or observer.

You can create a plugin for either placeOrder or submitQuote function from
Magento\Quote\Model\QuoteManagement class or create an observer for each of the
events:

sales _model service quote submit before
sales_model service_quote submit_ success
sales_model service_quote_submit_failure
checkout_submit_before
checkout_submit _all after

This allows to integrate a custom logic into the order creation process (for example,
sending the data to the third-party ERP system side).

Describe how to modify order processing flow. How
would you add new states and statuses for an
order? How do you change the behavior of existing
states and statuses?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Magento 2 has a system of states and statuses that influences the order processing.
The difference between a status and a state lies in the following. State is the actual
position in order processing flow, so state influences the possible actions during the
order processing. For example, you can create an invoice or ship during the state
processing, and the order status does not have an effect on any of the actions (with the
exception of third-party modules’ logic).

State can have several statuses which allows to describe the order process more
flexibly. The connection between state and status is stored in sales_order_status_state
table.

To modify states or statuses programmatically, use setStatus and setState methods. To
add a new record into the order history, apply addStatusToHistory method.

$order->setState(\Magento\Sales\Model\Order: :STATE PROCESSING);
$order->setStatus('processing');
$order->addStatusToHistory($order->getStatus(), 'Custom Message');
$order->save();

You can create a new status via the admin panel (navigate to Stores -> Order Status) or
via setup script
(\Magento\Sales\Setup\Patch\Data\InstallOrderStatusesAndInitialSalesConfig class).
Adding a new state is possible only via setup script.

Working with an order depending on its state is hardcoded in
\Magento\Sales\Model\Order class. To modify their behavior, create plugins for this
class methods and, if possible, other methods in Magento_Sales module.

Describe how to customize invoices. How would
you customize invoice generation, capturing, and
management?

To create an Invoice, use \Magento\Sales\Model\Service\InvoiceService class and its
method preparelnvoice that utilizes \Magento\Sales\Model\Order\Invoice. If you need
to introduce a custom logic into the invoice creating process, use one of the following

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

events: sales_order_invoice_pay, sales_order_invoice_cancel,
sales_order_invoice_register or create a plugin for
\Magento\Sales\Model\Service\lnvoiceService::preparelnvoice method.

Invoice can have one of the following states:
STATE_OPEN

STATE_PAID

STATE_CANCELED

It can also have two types - online invoice and offline invoice.

Online invoice calls the capture method for payment method, which, in its turn, sends a
query to the payment system. Offline invoice modifies the payment information only on
Magento side.

Describe refund functionality in Magento. Which
refund types are available, and how are they used?

Credit Memo is responsible in Magento 2 for the refund, allowing to return the order
partially or completely. Also, refund can be offline and online (depending on the order
type). The difference between offline and online lies in the following: offline refund is
performed on Magento side and does not send any requests to the payment processing
system, while online refund sends a query to the payment system.

Example of _void method in \Magento\Sales\Model\Order\Payment :

protected function void($isOnline, $amount = null,
$gatewayCallback = 'void')
{

$order = $this->getOrder();

$authTransaction = $this->getAuthorizationTransaction();

$this->setTransactionId(

$this->transactionManager->generateTransactionId($this,

Transaction::TYPE_VOID, $authTransaction)

);

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$this->setShouldCloseParentTransaction(true);

// attempt to void

if ($isOnline) {
$method = $this->getMethodInstance();
$method->setStore($order->getStoreld());
$method->{$gatewayCallback}($this);

}

Magento 2 Enterprise Edition also allows to perform the refund into Store Credits, with
which a customer can later pay for other items in this store.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Section 10: Customer Management

10.1 Demonstrate ability to customize My
Account

Magento_Customer module is responsible for the user account functioning. If you need
to modify in some way the user account (for instance, add new elements, delete the
existing ones or change the position of blocks), you need to modify the
Magento_Customer module components. We can do this using the modules or our own
theme. For the sake of clarity, we will demonstrate everything that we describe on our
custom theme; the procedures will be similar for modules as well. We will use the side
menu modification in the user account as an example.

Describe how to customize the “My Account”
section. How do you add a menu item?

In order to modify the side menu, we need to modify the customer_account_navigation
block from customer_account.xml layout-file. For this, we need to create a
customer_account.xml file and place it in our theme at the following path:
Magento_Customer/layout/. Adding instructions in this file, we can add or delete new
menu item, and change their position. To add a new menu item, add the following
instruction into customer_account.xml file:

<referenceBlock name="customer_account_navigation">
<block class="Magento\Customer\Block\Account\SortLinkInterface"
name="customer-account-navigation-address-1ink">
<arguments>

<argument name="label" xsi:type="string"
translate="true">My awesome menu item</argument>

<argument name="path"
xsi:type="string">path/i/need</argument>

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<argument name="sortOrder"
xsi:type="number">100</argument>
</arguments>
</block>
</referenceBlock>

We add a new block of the Magento\Customer\Block\Account\SortLinkInterface type
and pass the menu item name, page link and sortOrder parameter as an argument, if we
want our menu item to be placed in a certain position. As a result, a new menu item will
appear in the user menu:

My Account
My Orders
My Downloadable Products

My Wish List

Account Information
Stored Payment Methods

Billing Agreements

My awesome menu item

My Product Reviews

Mewsletter Subscriptions

To delete the existing menu item, apply the following instruction:
<referenceBlock name="name-of-the-link-to-remove" remove="true"/>

As a parameter, we need to pass the name of the block we want to delete. For example,
let us delete the newsletter subscriptions page:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

<referenceBlock
name="customer-account-navigation-newsletter-subscriptions-1link"
remove="true" />

Finally, when we need to change the block order, we can modify the sortOrder argument
value. For example, let us make the Wishlist section the first menu item:

<referenceBlock name="customer-account-navigation-wish-1list-1ink">
<arguments>
<argument name="sortOrder" xsi:type="number">500</argument>
</arguments>
</referenceBlock>

How would you customize the “Order History”
page?

To customize My Orders page, modify the layout-file sales_order_history.xml of the
Magento_Sales module. For this, create a sales_order_history.xml file and place it in our
theme at the following path: Magento_Sales/layout/. Then, apply any instructions,
provided in Magento 2 for layout customization. For example, let us add a text block
before the orders list:

<referenceContainer name="sales.order.history.info">
<block class="Magento\Framework\View\Element\Text" name="my_text">
<arguments>
<argument name="text" xsi:type="string">Hey! I have been
added to demonstrate the ability to adding the new blocks!</argument>
</arguments>
</block>
</referenceContainer>

As a result, on the My Orders page in the user account we will see the following text:

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

My Orders

Hey! | have been added to demonstrate the ability to adding the new blocks!

Order # Date Ship To Order Total Status Action

000000004 11/18/18 Andrei Litvin $43.00 Pending View Order Reorder

000000003 11/18/18 Andrei Litvin $92.00 Pending View Order Reorder
2 Itemn(s) Show | 10 v~ | per page

To modify the order table contents (for example, add a new column), we need to
override the
vendor/magento/module-sales/view/frontend/templates/order/history.phtml template.

10.2 Demonstrate ability to customize
customer functionality

Describe how to add or modify customer attributes.

To create a new customer attribute, use setup scripts. This is the example of customer
attribute creation:

class InstallData implements
\Magento\Framework\Setup\InstallDataInterface
{
private $customerSetupFactory;
private $attributeSetFactory;
public function _ construct(
\Magento\Customer\Setup\CustomerSetupFactory $customerSetupFactory,
\Magento\Eav\Model\Entity\Attribute\SetFactory $attributeSetFactory
) {
$this->customerSetupFactory = $customerSetupFactory;
$this->attributeSetFactory = $attributeSetFactory;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

public function install(

\Magento\Framework\Setup\ModuleDataSetupInterface $setup,
\Magento\Framework\Setup\ModuleContextInterface $context
) {

$installer = $setup;

$installer->startSetup();

$customerSetup = $this->customerSetupFactory->create(['setup’
=> $setup]);

$customerSetup->addAttribute(\Magento\Customer\Model\Customer: :ENTITY
, 'new_attribute', [

"type' => 'varchar',

"label’ => 'new attribute’,

"input' => 'text',

'required' => false,

'visible' => true,

'user_defined' => true,

'system' => false,

‘used_in_forms' => [
"adminhtml_customer’,
"adminhtml_checkout',
‘checkout_register',
'customer_account_create',
'customer_account_edit',

1);

Customer attributes can be displayed in different forms, which are set in used_in_forms
parameter. The list of forms can be found in customer_form_attribute table.

To modify the attribute, use \Magento\Customer\Setup\CustomerSetupFactory. We can

also use updateAttribute method or load the attribute using getAttribute method and
modify the parameter via setData.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

$customerSetup = $this->customerSetupFactory->create(['setup’ =>

$setup]);
$customerSetup->updateAttribute(\Magento\Customer\Model\Customer: :ENT

ITY, 'new_attribute', 'visible', false);

$customerSetup = $this->customerSetupFactory->create(['setup’ =>
$setup]);

$attribute = $customerSetup->getEavConfig()->getAttribute(
\Magento\Customer\Model\Customer: :ENTITY,

‘new_attribute')

->setData('used_in_forms', ['adminhtml_customer']);
$attribute->save();

Describe how to extend the customer entity. How
would you extend the customer entity using the
extension attributes mechanism?

Module developers can not modify API Data interfaces, described in core Magento 2,
but the majority of the modules have the extension attributes mechanism. Extension
attributes are set and stored separately from the data object of the initial class, so
everything, connected with data storage and extraction, must be realized by the
developer himself.

To create extension attribute, declare it in the etc/extension_attribute.xml file of the
module:

<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:Api/etc/extensio
n_attributes.xsd"> <extension_attributes

for="Magento\Customer\Api\Data\CustomerInterface"> <attribute

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

code="new_attribute" type="string" /> </extension_attributes>
</config>

To get or modify extension attributes, apply the system of plugins to save, get, getList
methods for Product Repository.

Example of extension_attributes for Customer.

File etc/extension_attributes.xml:

<?xml version="1.0" encoding="utf-8" ?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:noNamespaceSchemalLocation="urn:magento:framework:Api/etc/extensio
n_attributes.xsd">
<extension_attributes
for="Magento\Customer\Api\Data\CustomerInterface">
<attribute code="ext_customer_attribute" type="string" />
</extension_attributes>
</config>

etc/di.xml
<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation="urn:magento:framework:0ObjectManager/et
c/config.xsd">
<type name="Magento\Customer\Api\CustomerRepositoryInterface">
<plugin name="extensionAttributeExtCustomerAttribute"
type="Belvg\CustomExtAttribute\Model\Plugin\CustomerRepository"” />
</type>
</config>

Model/Plugin/CustomerRepository.php

<?php
namespace Belvg\CustomExtAttribute\Model\Plugin\CustomerRepository;

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

class CustomerRepository

{

public function afterGet(CustomerRepositoryInterface $subject,
CustomerInterface $result)
{
$extensionAttributes =
$this->getExtensionAttributes($result);
//custom logic
$extCustomerAttribute =
$this->customGetExtCustomerAttribute();

$extensionAttributes->setExtCustomerAttribute($extCustomerAttribute)
return $result;

public function aroundSave(
CustomerRepositoryInterface $subject,
callable $proceed,
CustomerInterface $customer,
$passwordHash = null
) {
$extCustomerAttribute =
$customer->getExtensionAttributes()->getExtCustomerAttribute();
$result = $proceed($customer, $passwordHash);
$this->customSetExtCustomerAttribute($extCustomerAttribute);
return $result;

Describe how to customize the customer address.
How would you add another field into the customer
address?

Magento has a standard set of attributes for the address, stored in
customer_address_entity table. Other attributes of the address need to be added as
EAV attributes. They will work via Custom Attributes.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

To add new fields into customer address, create an EAV attribute using
\Magento\Customer\Setup\CustomerSetupFactory.

$customerSetup->addAttribute(\Magento\Customer\Api\AddressMetadatalInt
erface::ENTITY_TYPE_ADDRESS, 'custom_address attribute', [

'type' => 'varchar',

"label’ => 'Custom address attribute’,

"input' => 'text',

'required' => false,

'visible' => true,

‘user_defined' => true,

'sort_order' => 100,

'position’ => 100,

'system' => 0,

1);

$customerEntity =
$customerSetup->getEavConfig()->getEntityType(\Magento\Customer\Api\A
ddressMetadataInterface: :ENTITY_TYPE_ADDRESS);

$attributeSetId =
$customerEntity->getDefaultAttributeSetId();

$attributeSet = $this->attributeSetFactory->create();
$attributeGroupld =
$attributeSet->getDefaultGroupId($attributeSetId);

$attribute =
$customerSetup->getEavConfig()->getAttribute(\Magento\Customer\Api\Ad
dressMetadatalnterface: :ENTITY_TYPE_ADDRESS,
"district');
$attribute->addData([
'attribute _set _id' => $attributeSetId,
"attribute group _id' => $attributeGroupld,
'used_in_forms' =>
[

"adminhtml_customer_address’,

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

'customer_address_edit"',
'customer_register_address',

);

$attribute->save();

Describe customer groups and their role in different
business processes. What is the role of customer
groups? What functionality do they affect?

User groups allow to modify taxes and discounts, create separate price rules for
different product groups, as well as separate their rights at the store side. Different
product groups have different cache for blocks.

There are the following default user groups:
1) NOT LOGGED IN
2) General
3) Wholesale
4) Retailer

NOT LOGGED IN is the only user group that you can not delete (same as you can not
delete the default registered users group, but, in contrast to NOT LOGGED IN, it is not
static, which means it can be modified). NOT LOGGED IN is assigned to all the visitors
without a session and determines the type of shopping cart (guest cart).

General is the default group for the unlogged users.

Describe Magento functionality related to VAT. How
do you customize VAT functionality?

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

Magento is a built-in functionality for working with VAT. VAT depends on seller’s
country and buyer’s address. When a downloadable product is purchased, VAT depends
solely on the delivery destination.

To configure VAT, you can navigate to the following path:

Stores > Configuration > General > General > Store Information
VAT Number - this is where you set the seller's VAT number.

Customers > All Customers > Edit Customer

Account Information > Tax/VAT Number - if set, then VAT will be calculated based on
the given field.

Addresses > VAT Number - if selected, VAT will be calculated with VAT taken into
account.

Configure > Customers > Customer Configuration
Show VAT Number on Storefront - allows a customer to set VAT Number when the
account is created or edited.

Default Value for Disable Automatic Group Changes Based on VAT ID - when selected, it
automatically changes the user group after the VAT Number is validated.

The parameters you see at the screenshot below are responsible for group selection
after the validation, if the “Default Value for Disable Automatic Group Changes Based on
VAT ID” parameter is active.

Default Group v Use system value
Group for Valid VAT ID - Domestic Please Select -
Group for Valid VAT 1D - Intra-Union Please Select -
Group for ||1'¢allc§'¢ATID Please Select -

Validation Error Group Please Select v

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

For the correct functioning of VAT in Magento, set the user groups and create the rules

and rates for TAX.

Tax can be applied separately to products and users with Product Tax Classes and
Customer Tax Classes (Stores > Tax Rules); you can also create taxes for certain areas
with Tax Zones and Rates(Stores > Tax Zones and Rates).

To modify Tax, apply sales_quote_collect_totals_before event that calculates the order’'s

total cost.

www.belvg.com Phone: +1 650 353 23 01 E-mail: contact@belvg.com

http://www.belvg.com/
mailto:contact@belvg.com

